天然气地球科学

• 天然气地质学 • 上一篇    下一篇

鄂尔多斯盆地三叠系延长组富有机质页岩孔隙特征及发育机制

耳闯1,2,赵靖舟1,2,王芮3,张杰1,袁野4,沈武显1,2   

  1. 1.西安石油大学地球科学与工程学院,陕西 西安 710065;
    2.陕西省油气成藏地质学重点实验室,陕西 西安 710065;
    3.中国石油大港油田分公司第二采油厂,河北 黄骅 061103;
    4.中国石油集团测井有限公司,陕西 西安 710077
  • 收稿日期:2015-12-20 修回日期:2016-02-02 出版日期:2016-07-10 发布日期:2016-07-10
  • 作者简介:耳闯(1982-),男,河北保定人,讲师,博士,主要从事沉积储层与非常规油气地质研究和教学工作. E-mail:erchuang@xsyu.edu.cn.
  • 基金资助:
    陕西省自然科学基金项目(编号:2013JQ503);陕西省教育厅重点科研项目(编号:15JS092);国家科技重大专项(编号:2011ZX5018001)联合资助.

Characteristics and occurrence mechanism of organic-rich shale in the Triassic Yanchang Formation,Ordos Basin,China

Er Chuang1,2,Zhao Jing-zhou1,2,Wang Rui3,Zhang Jie1,Yuan Ye4,Shen Wu-xian1,2   

  1. 1.School of Earth Science and Engineering,Xi’an Shiyou University,Xi’an 710065,China;
    2.Shaanxi Key Lab of Petroleum Accumulation Geology,Xi’an 710065,China;
    3.The 2nd Oil Production Plant of Dagang Oilfield Company,PetroChina,Huanghua 061103,China;
    4.China Petroleum Logging Co.Ltd.,Xi’an 710077,China
  • Received:2015-12-20 Revised:2016-02-02 Online:2016-07-10 Published:2016-07-10

摘要: 页岩储层孔隙发育特征是页岩储层评价的重要内容,也是开展页岩油气赋存机理研究的基础。提出了通过“基质类型—孔隙产状—孔隙成因”划分孔隙类型的方案。利用氩离子抛光和场发射扫描电镜技术观察孔隙发育情况,根据基质类型和孔隙产状,识别了4类孔隙:粒间孔、粒内孔、有机质孔和微裂缝,并根据孔隙成因将粒间孔分为碎屑颗粒间原生孔、黏土矿物片体间孔和颗粒间溶蚀孔,将粒内孔分为长石颗粒内溶蚀孔、黏土矿物片体内孔和黄铁矿晶体间孔。有机质孔主要为有机质颗粒内的微裂缝和有机质内孤立分布的孔径较小的孔隙。微裂缝主要表现为纹层缝或页理缝。综合孔隙图像分析、低温液氮吸附实验结果、孔隙结构参数与矿物组成、有机碳含量和有机质成熟度等参数相关性分析,认为沉积条件、成岩作用和有机质热演化控制了孔隙的形成和保存。半深湖—深湖沉积环境下,富有机质页岩中发育重力流成因的薄层砂质纹层,纹层段碎屑颗粒含量高,有利于形成碎屑颗粒粒间孔、碎屑颗粒粒内孔和顺层微裂缝。早期成岩作用阶段形成黄铁矿,有利于形成黄铁矿晶间孔,但黄铁矿也是压实作用的主要参与者;压实作用造成粒间孔和粒内孔的孔径变小和孔体积降低,碎屑颗粒和黄铁矿与有机质颗粒间呈凹凸接触,有机质孔在压实作用下闭合导致有机质孔不发育;溶蚀作用促进长石粒间溶孔和长石粒内溶孔的形成,一定程度改善储层质量。在成熟度达到一定阶段(RO≈0.75%)后,开始出现有机质孔。有机质孔发育程度差,一方面受成熟度的影响,另一方面可能是压实作用造成的。此外,富有机质泥页岩渗透性较差,烃类被吸附在有机质表面或溶于干酪根内部,造成干酪根体积膨胀也可能是有机质孔不发育的一种原因。

关键词: 矿物基质孔, 有机质孔, 沉积环境, 成岩作用, 有机质演化程度

Abstract: Pore characteristics of shale reservoir are significant content for shale reservoir appraisal,and also the basic for the occurrence mechanism study of shale oil and gas.One scheme for pore types division was recommended in this paper.The scheme is based on mineral matrix types,attitudes and origins of pores.Ar-iron milling and field emission scanning electronic microscope were used to observe pore characteristics.Based on mineral matrix types and attitudes of pores,four kinds of pores were determined,including intergranular pore,intragranular pore,organic matter pore and micro-fracture.Then,according to the origins of pores,sub-types of pores were distinguished.Intergranular pore was divided into primary pores among clastic grains,pores among clay minerals aggregation,and dissolved pores among clastic grains.Intragranular pore include dissolved pores in feldspar,pores among (between) plates of clay minerals,and pores among pyrite crystal.Organic matter pores mainly incorporate micro-fracture in organic matter grain and pores with micro diameter discretely distributed in organic matter grain.Micro-fracture mainly includes fracture between lamina and lamellation.Sedimentary environment,diagenesis and thermal evolution of organic matter co-controlled the origin and preservation of pores in shale.Semi-deep to deep lacustrine environment  was conducive to forming organic-rich shale accompanied by thin sandy lamina with origin of gravity flow.Shale deposited with these features was favor of primary pores among clastic grains,pores in calstic grains,and micro-fracture along lamina.Pyrites that formed during eodiagenesis were favor of pores among pyrites,but pyrite also participated in compaction.Compaction caused pore diameter becoming narrower and pore volume becoming smaller,particularly for intragranular pore and intergranular pore.Contact relation between clastic grains and organic matter grains was concave-convex,also between pyrites and organic matter grains.Organic matter pores closed under compaction resulting in organic matter pore not well developed in Chang-7 Member.Dissolution was helpful to form dissolved pores among or in feldspar,as a result,reservoir quality may be improved.There may be no organic matter pore until maturity reached some level (maybe RO≈0.75%).One of the reason why organic matter pore not well developed is the low maturity,another reason is compaction during burial.Moreover,as permeability of organic rich shale is very low and hydrocarbon may be adsorbed on or dissolved to kerogen,the volume of kerogen may swell resulting in organic matter pore not well developed.

Key words: Pores in or among mineral matrix, Organic matter pore, Sedimentary environment, Diagenesis, Thermal maturity of organic matter

中图分类号: 

  • TE122.2

[1]Loucks R G,Reed R M,Ruppel S C,et al.Morphology,genesis,and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale[J].Journal of Sedimentary Research,2009,79(12):848-861.
[2]Desbois G,Urai J L,Kukla P A.Morphology of the pore space in claystones:Evidence from BIB/FIB ion beam sectioning and cryo-SEM observations[J].Earth Discuss,2009,4(1):1-19.
[3]Milner M,McLin R,Petriello J.Imaging texture and porosity in mudstones and shales:Comparison of secondary and ion milled backscatter SEM methods[C]//CUSG/SPE-138975.paper presented at the Canadian Unconventional Resources & International Petroleum Conference,19-21 October 2010.Calgary,Alberta,Canada:CUSG/SPE,2010.
[4]Curtis M E,Ambrose R J,Sondergeld C H,et al.Transmission and scanning electron microscopy investigation of pore connectivity of gas shales on the nanoscale[C]//SPE-144391.paper presented at the SPE North American Unconventional Gas Conference and Exhibition,14-17 June 2011.Woodlands Texas,USA:SPE,2011.
[5]Zou Caineng,Zhu Rukai,Bai Bin,et al.First discovery of nano-pore throat in oil and gas reservoir in China and its scientific value[J].Acta Petrologica Sinica,2011,27(6):1857-1864.[邹才能,朱如凯,白斌,等.中国油气储层中纳米孔首次发现及其科学价值[J].岩石学报,2011,27(6):1857-1864.]
[6]Curtis M E,Sondergeld C H,Ambrose R J,et al.Microstructural investigation of gas shales in two and three dimensions using nanometer-scale resolution imaging[J].AAPG Bulletin,2012,96(4):665-677.
[7]Loucks R G,Reed R M,Ruppel S C,et al.Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores[J].AAPG Bulletin,2012,96(6):1071-1098.
[8]Chalmers G R,Bustin R M,Power I M.Characterization of gas shale pore systems by porosimetry,pycnometry,surface area,and field emission scanning electron microscopy/transmission electron microscopy image analyses:Examples from the Barnett,Woodford,Haynesville,Marcellus,and Doig units[J].AAPG Bulletin,2012,96(6):1099-1119.
[9]Camp W K,Diaz E,Wawak B.Electron Microscopy of Shale Hydrocarbon Reservoir:AAPG Memoir 102[M].Tulsa:The American Association of Petroleum Geologists,2013:1-172.
[10]Yang Hua,Li Shixiang,Liu Xianyang.Characteristics and resource prospects of tight oil and shale oil in Ordos Basin[J].Acta Petrolei Sinica,2013,34(1):1-11.[杨华,李士祥,刘显阳.鄂尔多斯盆地致密油、页岩油特征及资源潜力[J].石油学报,2013,34(1):1-11.]
[11]Zou Caineng,Yang Zhi,Cui Jingwei,et al.Formation mechanism,geological characteristics and development strategy of nonmarine shale oil in China[J].Petroleum Exploration and Development,2013,40(1):14-26.[邹才能,杨智,崔景伟,等.页岩油形成机制、地质特征及发展对策[J].石油勘探与开发,2013,40(1):14-26.]
[12]Gao Gang,Liu Xianyang,Wang Yinhui,et al.Characteristics and resource potential of the oil shale of Chang 7 layer in Longdong area,Ordos Basin[J].Earth Science Frontiers,2013,20(2):140-146.[高岗,刘显阳,王银会,等.鄂尔多斯盆地陇东地区长7段页岩油特征与资源潜力[J].地学前缘,2013,20(2):140-146.]
[13]Slatt R M,O’Brien N R.Pore types in the Barnett and Woodford gas shales:Contribution to understanding gas storage and migration pathways in fine-grained rocks[J].AAPG Bulletin,2012,95(12):2017-2030.
[14]Milliken K L,Rudnicki M,Awwiller D N,et al.Organic matter-hosted pore system,Marcllus Formation(Devonian),Pennsylvania[J].AAPG Bulletin,2013,97(2):177-200.
[15]Nie Haikuan,Zhang Jinchuan.Types and characteristics of shale gas reservoir:A case study of Lower Paleozoic in and around Sichuan Basin[J].Petroleum Geology & Experiment,2011,33(3):219-225.[聂海宽,张金川.页岩气储层类型和特征研究——以四川盆地及其周缘下古生界为例[J].石油实验地质,2011,33(3):219-225.]
[16]Wu Kan,Ma Qiangfen,Feng Qinglai.Middle Permianpore characteristics and shale gas exploration significance from the Gufeng Formation in Jianshi,western Hubei[J].Earth Science:Journal of China University of Geosciences,2012,37(supplement 2):175-183.[吴勘,马强分,冯庆来.鄂西建始中二叠世孤峰组孔隙特征及页岩气勘探意义[J].地球科学:中国地质大学学报,2012,37(增刊2):175-183.]
[17]Yang Yuan,Zhang Lei,Feng Qinglai.Blackrock series from the Early Cambrian Hetang Formation in Zhitang Section,west Zhejiang Province[J].Geological Science and Technology Information,2012,31(6):110-117.[杨元,张磊,冯庆来.浙西志棠剖面下寒武统荷塘组黑色岩系孔隙特征[J].地质科技情报,2012,31(6):110-117.]
[18]Bernard S,Wirth R,Schreiber A,et al.Formation of nanoporous pyrobitumen residues during maturation of the Barnett Shale (Fort Worth Basin)[J].International Journal of Coal Geology,2012,103(23):3-11.
[19]Er Chuang,Zhao Jingzhou,Bai Yubin,et al.Reservoir characteristics of the organic-rich shales of the Triassic Yanchang Formation in Ordos Basin[J].Oil & Gas Geology,2013,34(5):708-716.[耳闯,赵靖舟,白玉彬,等.鄂尔多斯盆地三叠系延长组富有机质泥页岩储层特征[J].石油与天然气地质,2013,34(5):708-716.]
[20]Yang Chao,Zhang Jinchuan,Tang Xuan.Microscopic pore types and its impact on the storage and permeability of continental shale gas,Ordos Basin[J].Earth Science Frontiers,2013,20(4):240-250.[杨超,张金川,唐玄.鄂尔多斯盆地陆相页岩微观孔隙类型及对页岩气储渗的影响[J].地学前缘,2013,34(5):708-716.]
[21]Yang Wei,Chen Guojun,Lv Chengfu,et al.Micropore characteristics of the organic-rich shale in the 7th members of the Yanchang Formation in the southeast of Ordos Basin[J].Natural Gas Geoscience,2015,26(3):418-426,591.[杨巍,陈国俊,吕成福,等.鄂尔多斯盆地东南部延长组长7段富有机质页岩孔隙特征[J].天然气地球科学,2015,26(3):418-426,591.]
[22]Cao Qian,Zhou Wen,Chen Wenling,et al.Analysis of pore types,sizes and genesis in continental shale gas reservoir of Chang 7 of Yanchang Formation,Ordos Basin[J].Journal of Mineralogy and Petrology,2015,35(2):90-97.[曹茜,周文,陈文玲,等.鄂尔多斯盆地南部延长组长7段陆相页岩气地层孔隙类型尺度及成因分析[J].矿物岩石,2015,35(2):90-97.]
[23]Zhang Qin,Liu Chang,Mei Xiaohan,et al.Status and prospect of research on microscopic shale gas reservoir space[J].Oil & Gas Geology,2015,36(4):666-674.[张琴,刘畅,梅啸寒,等.页岩气储层微观储集空间研究现状及展望[J].石油与天然气地质,2015,36(4):666-674.]
[24]Di Shixiang.Pore Structures of Clastic Reservoir in China[M].Xi’an:Press of Northwest University,1986:1-6.[邸世祥.中国碎屑岩储集层的孔隙结构[M].西安:西北大学出版社,1986:1-6.]
[25]Zhang Houfu,Zhang Wanxuan.Petroleum Geology[M].Beijing:Petroleum Industrial Press,2000:101-118.[张厚福,张万选.石油地质学[M].北京:石油工业出版社,2000:101-118.]
[26]Schmidt V.Secondary reservoir porosity in the course of sandstone diagenesis[M]//T ulsa:AAPG Continuing Education Course,Americem Association of Petroleum Geologists,1979:10-80.
[27]Curtis M E,Cardott B J,Sondergeld C H,et al.Development of organic porosity in the Woodford Shale withincreasing thermal maturity[J].International Journal of Coal Geology,2012,103(1):26-31.
[28]Curtis M E,Cardott B J,Sondergeld C H,et al.The development of organic porosity in the Woodford shale related to thermal maturity[C]//SPE-160158.paper presented at the SPE Annual Technical conference and Exhibition,8-10 October 2012.San Antonio,Texas,USA:SPE,2012.
[29]Bernard S,Horsfield B,Schulz H,Wirth R,et al.Geochemical evolution of organic-rich shales with increasing maturity:A STXM and TEM study of the Posidonia shale( Lower Toarcian,north Germany)[J].Marine and Petroleum Geology,2012,31(1):70-89.
[30]Zeng Weite,Zhang Jinchuan,Ding Wenlong,et al.Characteristics and influence factors of nanopores in Yanchang Shale reservoir:A case study of Liuping-171 Well in Erdos Basin[J].Journal of China Coal Society,2014,39(6):1118-1126.[曾维特,张金川,丁文龙,等.延长组页岩储层纳米级孔隙特征及影响因素——以鄂尔多斯盆地柳坪171井为例[J].煤炭学报,2014,39(6):1118-1126.]
[31]Wang Xiangzeng,Liu Guoheng,Huang Zhilong,et al.The characteristics of shale reservoir of the No.7 members in Yanchang Formation of southeast Ordos Basin[J].Natural Gas Geoscience,2015,26(7):1385-1394.[王香增,刘国恒,黄志龙,等.鄂尔多斯盆地东南部延长组长7段泥页岩储层特征[J].天然气地球科学,2015,26(7):1385-1394.]
[32]Er Chuang.Characteristics of Continental Organic-rich Shales and Its Control Factors in Yanchang Formation,Ordos Basin[R].Xi’an:Science and Technology Department of Shaanxi Province,2016:1-50.[耳闯,鄂尔多斯盆地延长组陆相富有机质页岩孔隙特征及其控制因素[R].西安:陕西省科学技术厅,2016:1-50.]
[33]Chalmers G R,Bustin R M,Power I M.A pore by any other name would be as small:The importance of meso- and microporosity in shale gas capacity[Z].AAPG Search and Discovery article,2009.
[34]Er Chuang,Zhao Jingzhou,Wang Rui,et al.Controlling role of sedimentary environment to distribution of organic-rich shale-Illustrated by the case of Chang-7 member of the Triassic Yanchang Formation,Ordos Basin[J].Natural Gas Geosciences,2015,26(5):823-832,892.[耳闯,赵靖舟,王芮,等.沉积环境对富有机质页岩分布的控制作用——以鄂尔多斯盆地三叠系延长组长7油层组为例[J].天然气地球科学,2015,26(5):823-832,892.]
[35]Er Chuang,Luo Anxiang,Zhao Jingzhou,et al.Lithofacies features of organic-rich shale of the Triassic Yanchang Formation in Huachi area,Ordos Basin[J].Earth Science Frontiers,2016,23(2):108-117.[耳闯,罗安湘,赵靖舟,等.鄂尔多斯盆地华池地区三叠系延长组长7段富有机质页岩岩相特征[J].地学前缘,2016,23(2):108-117.]
[36]Liu Guoheng,Huang Zhilong,Jiang Zhenxue,et al.The characteristic and reservoir significance of lamina in shale from Yanchang Formation of Ordos Basin[J].Natural Gas Geoscience,2015,26(3):208-217.[刘国恒,黄志龙,姜振学,等.鄂尔多斯盆地延长组湖相页岩纹层发育特征及储集意义[J].天然气地球科学,2015,26(3):208-217.]
[37]Liu Guanghua.Study of the relationship between characteristics of clay minerals and depositional environments[J].Acta Sedimentologica Sinica,1987,5(1):48-58.[刘光华.黏土矿物特征与沉积环境关系的初步探讨[J].沉积学报,1987,5(1):48-58.]
[38]Slatt R M,Philp P R,Abousleiman Y,et al.Pore-to-regional-scale integrated characterization workflow for unconventional gas shales[C]//Breyer J A.Shale Reservoirs-Giant Resources for the 21st Century:AAPG Memoir 97.Tulsa:The American Association of Petroleum Geologists,2012:322-343.
[39]Modica C J,Lapierre S G.Estimation ofkerogen porosity in source rocks as a function of thermal transformation:Example from the Mowry Shale in the Powder River Basin of Wyoming[J].AAPG Bulletin,2012,96(1):87-108.
[40]Curtis M E,Ambrose R J,Sondergeld C H.Structural characterization of gas shales on the micro- and nano-scals[C]//CUSG/SPE-137693.,paper presented at the Canadian Unconventional Resources & International Petroleum Conference,19-21 October 2010.Calgary,Alberta,Canada:CUSG/SPE,2010.
[41]Passey Q R,Bohacs K M,Esch W L,et al.From oil-prone source rock to gas-producing shale reservoir-Geologic and petrophysical characterization of unconventional shale gas reservoir[C]//SPE-131350.paper presented at the International Oil & Gas Conference and Exhibition,8-10 July 2011.Beijing,China:CPS/SPE,2011.
[42]Bernard S,Wirth R,Schreiber A,et al.Formation of nanoporous pyrobitumen residues during maturation of the Barnett Shale (Fort Worth Basin)[J].International Journal of Coal Geology,2012,103(23):3-11.
[43]Eseme E,Krooss B M,Littke R.Evolution of petrophysical properties of oil shales during high-temperature compaction tests:Implications for petroleum expulsion[J].Marine and Petroleum Geology,2012,31:110-124.
[44]Hu Haiyan.Porosity evolution of the organic-rich shale with thermal maturity increasing[J].Acta Petrolei Sinica,2013,34(5):820-825.[胡海燕.富有机质 Woodford 页岩孔隙演化的热模拟实验[J].石油学报,2013,34(5):820-825.]
[45][KG*5/6]Hu Haiyan,Zhang Tongwei,Wiggins-Camacho J,et al.Experimental investigation of changes in methane adsorption of bitumen-free Woodford Shale with thermal maturation induced by hydrous pyrolysis[J].Marine and Petroleum Geology,2015,59(1):114-128.
[46]Wu Songtao,Zhu Rukai,Cui Jinggang,et al.Characteristics of lacustrine shale porosity evolution,Triassic Chang 7 Member,Ordos Basin,NW China[J].Petroleum Exploration and Development,2015,42(2):167-176.[吴松涛,朱如凯,崔京钢,等.鄂尔多斯盆地长 7 湖相泥页岩孔隙演化特征[J].石油勘探与开发,2015,42(2):167-176.]
[47]Bernard S,Brown L,Wirth R,et al.FIB-SEM and TEM Investigations of an organic-rich shale maturation series from the Lower Toarcian Posidonia Shale,Germany:Nanoscale pore system and fluid-rock interactions[C]//Camp W K,Diaz E,Wawak B.Electron Microscopy of Shale Hydrocarbon Reservoir:AAPG Memoir 102.Tulsa:The American Association of Petroleum Geologists,2013:53-66.
[48]Jennings D,Antia J.Petrographic characterization of the Eagle Ford Shale,South Texas:Mineralogy,common constituents,and distribution of nanometer-scale pore types[C]//Camp W K,Diaz E,Wawak B.Electron Microscopy of Shale Hydrocarbon Reservoir:AAPG Memoir 102.Tulsa:The American Association of Petroleum Geologists,2013:101-114.
[49]Driskill B,Walls J,DeVito J,et al.Applications of SEM imaging to reservoir characterization in the Eagle Ford Shale,South Texas,U.S.A.[C]//Camp W K,Diaz E,Wawak B.Electron Microscopy of Shale Hydrocarbon Reservoir:AAPG Memoir 102.Tulsa:The American Association of Petroleum Geologists,2013:115-136.
[50]Jarvie D M,Jarvie B M,Weldon W D,et al.Components and processes impacting production success from unconventional shale resource systems[C]//GEO-2012,10th Middle East Geosciences Conference and Exhibition,Manama,Bahrain,March 4-7,2012.
[51]Fishman N S,Hackley P C,Lowers H A,et al.The nature of porosity in organic-rich mudstones of the Upper Jurassic Kimmeridge Clay Formation,North Seam offshore United Kingdom[J].International Journal of Coal Geology,2012,103:32-50.
[52]Zhang T W,Ellis G S,Ruppel S C,et al.Effect of organic-matter type and thermal maturity on methane adsorption in shale-gas systems[J].Organic Geochemistry,2012,47(6):120-131.
[53]Yang Hua,Zhang Wenzheng.Leading effect of the Seventh Member high-quality source rock of Yanchang Formation in Ordos Basin during the enrichment of low-penetrating oil-gas accumulation:Geology and geochemistry[J].Geochimica,2005,34(2):147-154.[杨华,张文正.论鄂尔多斯盆地长7段优质油源岩在低渗透油气成藏富集中的主导作用:地质地球化学特征[J].地球化学,2005,34(2):147-154.]
[54]Zhang Wenzheng,Yang Hua,Li Jianfeng,et al.Leading effect of high-class source rock of Chang7 in Ordos Basin on enrichment of low permeability oil gas accumulation[J].Petroleum Exploration and Development,2006,33(3):289-293.[张文正,杨华,李剑锋,等.论鄂尔多斯盆地长7段优质油源岩在低渗透油气成藏富集中的主导作用——强生排烃特征及机理分析[J].石油勘探与开发,2006,33(3):289-293.]

[1] 王岚, 曾雯婷, 夏晓敏, 周海燕, 毕赫, 商斐, 周学先. 松辽盆地齐家—古龙凹陷青山口组黑色页岩岩相类型与沉积环境[J]. 天然气地球科学, 2019, 30(8): 1125-1133.
[2] 张振宇, 张立宽, 罗晓容, 曹斌风, 林会喜, 曾治平, 秦峰, 贺文君, 李超, 雷裕红. 准噶尔盆地中部地区深层西山窑组砂岩成岩作用及其对储层质量评价的启示[J]. 天然气地球科学, 2019, 30(5): 686-700.
[3] 钟洪洋, 张道勇, 肖明国, 徐耀辉, . 洞庭盆地第四系极浅层天然气成因类型及地质意义[J]. 天然气地球科学, 2019, 30(3): 361-369.
[4] 何龙, 王云鹏, 陈多福, 王钦贤, 王成. 重庆南川地区五峰组—龙马溪组黑色页岩沉积环境与有机质富集关系[J]. 天然气地球科学, 2019, 30(2): 203-218.
[5] 陈秀艳, 贾进华, 崔文娟, 张立平, 周波, 申银民, 陈延贵. 塔里木盆地哈拉哈塘地区东河砂岩段成岩作用及对孔渗影响[J]. 天然气地球科学, 2019, 30(1): 51-61.
[6] 陈俊飞, 李琦, 朱如凯, 毛治国. 鄂尔多斯盆地陕北地区长101低孔低渗储层孔隙演化及其定量模式[J]. 天然气地球科学, 2019, 30(1): 83-94.
[7] 吕正祥, 王先东, 吴家洋, 卿元华. 渤海海域中部古近系湖相碳酸盐岩储层成岩演化特征[J]. 天然气地球科学, 2018, 29(7): 921-931.
[8] 王朋飞, 姜振学, 吕鹏, 金璨, 李鑫, 黄璞. 重庆周缘下志留统龙马溪组和下寒武统牛蹄塘组页岩有机质孔隙发育及演化特征[J]. 天然气地球科学, 2018, 29(7): 997-1008.
[9] 邱 振,邹才能,李熙喆,王红岩,董大忠,卢斌,周尚文,施振生,冯子齐,张梦琪. 论笔石对页岩气源储的贡献——以华南地区五峰组—龙马溪组笔石页岩为例[J]. 天然气地球科学, 2018, 29(5): 606-615.
[10] 王涛利,郝爱胜,陈清,李,王庆涛,卢鸿,刘大永. 中扬子宜昌地区五峰组和龙马溪组页岩发育主控因素[J]. 天然气地球科学, 2018, 29(5): 616-631.
[11] 钟 佳,尤丽,张迎朝,曲希玉,代龙,吴仕玖. 琼东南盆地乐东—陵水凹陷黄流组峡谷水道储层成岩作用与孔隙演化[J]. 天然气地球科学, 2018, 29(5): 708-718.
[12] 倪新锋,沈安江,韦东晓,乔宇婷,王莹. 碳酸盐岩沉积学研究热点与进展:AAPG百年纪念暨2017年会及展览综述[J]. 天然气地球科学, 2018, 29(5): 729-742.
[13] 申宝剑,秦建中,腾格尔,潘安阳,仰云峰,边立曾. 中国南方海相烃源岩中细菌状化石识别[J]. 天然气地球科学, 2018, 29(4): 510-517.
[14] 曹涛涛,邓模,宋之光,刘光祥,黄俨然,Andrew Stefan Hursthouse. 黄铁矿对页岩油气富集成藏影响研究[J]. 天然气地球科学, 2018, 29(3): 404-414.
[15] 靳子濠, 周立宏, 操应长, 付立新, 李宏军, 楼达, 孙沛沛, 冯建园, 远光辉, 王铸坤. 渤海湾盆地黄骅坳陷二叠系砂岩储层储集特征及成岩作用[J]. 天然气地球科学, 2018, 29(11): 1595-1607.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 付广;王剑秦. 地壳抬升对油气藏保存条件的影响[J]. 天然气地球科学, 2000, 11(2): 18 -23 .
[2] 周兴熙;. 库车油气系统油气藏相态分布及其控制因素[J]. 天然气地球科学, 2004, 15(3): 205 -213 .
[3] 黄安敏;裴建翔;陈志宏;李绪深;李林;. 油气储层预测技术在琼东南盆地BD13区的应用[J]. 天然气地球科学, 2006, 17(4): 518 -522 .
[4] 胡守志,付晓文,王廷栋,李延均 . 储层中的沥青沉淀带及其对油气勘探的意义[J]. 天然气地球科学, 2007, 18(1): 99 -103 .
[5] 李士祥;胡明毅;李霞;. 榆林气田山西组2段砂岩成岩作用及孔隙演化[J]. 天然气地球科学, 2005, 16(2): 200 -205 .
[6] 刘文汇;黄第藩;熊传武;徐永昌;. 成烃理论的发展及国外未熟―低熟油气的分布与研究现状[J]. 天然气地球科学, 1999, 10(1-2): 1 -22 .
[7] 胡雄;李延钧;陈新领;江波;马立协;付晓文;王强;梁艳;. 柴北缘马海地区油气全烃地球化学特征与成因[J]. 天然气地球科学, 2005, 16(5): 612 -616 .
[8] 吴时国;袁圣强;. 世界深水油气勘探进展与我国南海深水油气前景[J]. 天然气地球科学, 2005, 16(6): 693 -699 .
[9] 张朝;张廷山;魏祥峰;戴传瑞;王秀林 . 也门X区块下白垩统沉积相分析[J]. 天然气地球科学, 2008, 19(06): 835 -839 .
[10] 陈凤喜 王勇 张吉 杨勇. 鄂尔多斯盆地苏里格气田盒8气藏开发有利区块优选研究[J]. 天然气地球科学, 2009, 20(1): 94 -99 .