天然气地球科学

• 天然气地质学 • 上一篇    下一篇

煤系致密砂岩气渗流机理实验模拟研究——以四川盆地上三叠统须家河组煤系致密砂岩气为例

陶士振1,高晓辉1,李昌伟1,曾溅辉2,张响响1,杨春1,张婧雅2,公言杰1   

  1. 1.中国石油勘探开发研究院,北京 100083;2.中国石油大学,北京 102249
  • 收稿日期:2015-10-13 修回日期:2016-06-16 出版日期:2016-07-10 发布日期:2016-07-10
  • 作者简介:陶士振(1966-),男,安徽颍上人,教授级高级工程师,主要从事油气成藏机理与分布评价研究. E-mail:tsz@petrochina.com.cn.
  • 基金资助:
    国家科技重大专项(编号:2008ZX05001-001;2011ZX05001-001);中国石油科技项目(编号:2014B-0608)联合资助.

The experiment simulation study on gas percolation mechanisms of tight sandstone core in coal measure strata:A case study on coal-measure tight sandstone gas in the Upper Triassic Xujiahe Formation,Sichuan Basin,China

Tao Shi-zhen1,Gao Xiao-hui1,Li Chang-wei1,Zeng Jian-hui2,Zhang Xiang-xiang1,Yang Chun1,Zhang Jing-ya2,Gong Yan-jie1   

  1. 1.Research Institute of Petroleum Exploration and Development,PetroChina,Beijing 100083,China;
    2.China University of Petroleum,Beijing 102249,China
  • Received:2015-10-13 Revised:2016-06-16 Online:2016-07-10 Published:2016-07-10

摘要: 中国含(油)气盆地广泛发育与煤系烃源岩共生或伴生的致密砂岩气,以四川盆地须家河组和鄂尔多斯盆地上古生界最为典型。受煤系烃源岩大范围面状蒸发式排烃和低缓构造背景影响,致密砂体内气体运移聚集过程中水动力和浮力作用相当受限,在这种低渗低速条件下,非达西渗流特征非常明显,形成气—水混杂的含气区。致密砂岩气驱水模拟实验中,渗流曲线形态主要受岩心渗透率大小的影响,渗透率值越低,则启动压力梯度越大,非达西现象愈加明显。致密砂岩注气驱水实验过程中,岩心的最大含气饱和度一般小于50%,主要分布在30%~40%之间,含气饱和度平均值为38%左右,与地下岩心所在气层的实际含气饱和度比较相近。岩心含气饱和度与渗透率呈较好的对数正相关关系,相关系数为0.891 5。致密砂岩气体单相渗流过程中,由于存在气体渗流的“滑脱效应”,低速非达西渗流特征异常明显,存在“拟初始流速Vd”。 单相气体渗流曲线形态特征主要受岩心渗透率及环压大小控制,渗透率值愈小或者环压值愈大,则非线性段越长,临界压力越高,启动压力梯度越大(0.02~0.08MPa/cm),拟初始流速则越大,非达西渗流特征越明显。致密砂岩气渗流机理研究表明,储层渗透率越低,启动压力越大,流速越慢,天然气运聚效率和含气饱和度较低。针对煤系致密砂岩气运聚机理实验室模拟研究,为揭示致密砂岩气富集规律和评价选区,同时为开发机理研究提供理论基础。

关键词: 煤系致密砂岩气, 煤成气, 一维实验模拟, 启动压力梯度, 充注渗流机理, 含气饱和度, 四川盆地三叠系须家河组

Abstract: Tight sandstone gas from coal-measure source rocks is widespread in China,and is most characterized by the Xujiahe Formation of the Sichuan Basin and the Upper Paleozoic of Ordos Basin.Coal-measure source rocks expelled hydrocarbon evaporatively.Under the setting of gentle structure,the gas migration-accumulation in tight sandstone is featured by restricted hydrodynamic and buoyance.Under the condition of low permeability and speed,non-Darcy flow is quite obvious,forming gas-water mixed mid-high water-bearing gas zone.In the water drive experiment,the shape of percolation flow curve is mainly influenced by core permeability:The lower the permeability,the higher the starting pressure gradient,and the more obvious the non-Darcy phenomenon.In the gas drive water experiment of tight sandstone,the maximum core gas saturation is generally less than 50% (ranging from 30% to 40% and averaging at 38%),similar to the actual gas saturation of the gas zone in the subsurface core.The core gas saturation and the permeability have correlative relationship,with correlation coefficient of 0.891 5.In the single-phase flow of tight sandstone gas,low-velocity non-Darcy percolation is obvious and proposed initial flow velocity (Vd) exists due to the slippage effect of gas flow.The shape of percolation flow curve in single-phase gas is primarily controlled by core permeability and circling pressure:the lower the permeability or the higher the circling pressure,the higher the starting pressure (0.02-0.08MPa/cm),proposed initial flow speed,square gradient of the critical pressure;the nonlinear section would also be longer and the non-Darcy flow would be more obvious.In general,tight sandstone gas seepage mechanism study showed that the lower the reservoir permeability,the bigger the start-up pressure,the slower the flow velocity.The efficiency of natural gas and gas saturation is low.The laboratory simulation research on coal-measure dense sandstone migration accumulation mechanism,provides a theoretic foundation for revealing the tight sandstone gas enrichment regularity,evaluation of prospecting area and the study of development mechanism

Key words: Coal-measure tight sandstone gas, Coal-derived gas, A one-dimensional experiment simulation, Starting pressure gradient, Filling flow mechanisms, Gas saturation, Triassic Xujiahe Formation in Sichuan Basin

中图分类号: 

  • TE122.1

[1]Schmoker J W.National assessment Report of USA Oil and Gas Resources[DB/CD].Reston:USGS,1995.
[2]Zou Caineng,Tao Shizhen,Yuan Xuanjun,et al.The formation conditions and distribution characteristics of continuous petroleum accumulations[J].Petroleum Exploration and Development,2009,36(3):669-682.[邹才能,陶士振,袁选俊,等.“连续型”油气藏成藏机理,分布特征与评价方法[J].石油勘探与开发,2009,36(3):669-682.]
[3]Zou Caineng,Tao Shizhen,Zhu Rukai,et al.Formation and distribution of “continuous” gas reservoirs and their giant gas province:A case from the Upper Triassic Xujiahe Formation giant gas province,Sichuan Basin[J].Petroleum Exploration and Development,2009,36(3):307-319.[邹才能,陶士振,朱如凯,等.连续型气藏及其大气区形成机制与分布——以四川盆地上三叠统须家河组煤系大气区为例[J].石油勘探与开发,2009,36(3):307-319.]
[4]Zou Caineng,Zhang Guangya,Tao Shizhen,et al.Geological features,major discoveries and unconventional petroleum geology in the global petroleum exploration[J].Petroleum Exploration and Development,2010,37(2):129-145.[邹才能,张光亚,陶士振,等.全球油气勘探领域地质特征、重大发现及非常规石油地质[J].石油勘探与开发,2010,37(2):129-145.]
[5]Dai Jinxing,Xia Xinyu,Wei Yanzhao,et al.Carbon isotope characteristics of natural gas in the Sichuan Basin,China[J].Petroleum Geology & Experiment,2001,23(2):115-121.[戴金星,夏新宇,卫延召,等.四川盆地天然气的碳同位素特征[J].石油实验地质,2001,23(2):115-121.]
[6]Dai Jinxing,Zou Caineng,Tao Shizhen,et al.Formation conditions and main controlling factors of large gasfields in China[J].Natural Gas Science,2007,18(4):473-484.[戴金星,邹才能,陶士振,等.中国大气田形成条件和主控因素[J].天然气地球科学,2007,18(4):473-484.]
[7]Dai Jinxing,Ni Yunyan,Wu Xiaoqi.Tight gas in China and its significance in exploration and exploitation[J].Petroleum Exploration and Development,2012,39(3):257-264.[戴金星,倪云燕,吴小奇.中国致密砂岩气及在勘探开发上的重要意义[J].石油勘探与开发,2012,39(3):257-264.]
[8]Masters J A.Deep basin gas trap,western Canada[J].AAPG Bulletin,1979,63(2):152-181.
[9]Rose P R.Possible basin centered gas accumulation,Roton Basin,southern Colorado[J].Oil & Gas Journal,1981,82(10):190-197.
[10]Holditch S  A.Tight gas sands[J].Journal of Petroleum Technology,2006,58(6):86-93.
[11]Qiu Zhongjian,Deng Songtao.Strategic position of unconventional natural gas resources in China[J].Natural Gas Industry,2012,32(1):1-5.[邱中建,邓松涛.中国非常规天然气的战略地位[J].天然气工业,2012,32(1):1-5.]
[12]Jia Chengzao,Zou Caineng,Li Jianzhong,et al.Assessment criteria,main types,basic features and resource prospects of the tight oil in China[J].Acta Petrolei Sinica,2012,33(3):343-351.[贾承造,邹才能,李建忠,等.中国致密油评价标准、主要类型、基本特征及资源前景[J].石油学报,2012,33(3):343-351.]
[13]Zou Caineng,Tao Shizhen,Hou Lianhua,et al.Unconventional Petroleum Geology[M].Beijing:Petroleum Industry Publishing House,2014:239-273.[邹才能,陶士振,侯连华,等.非常规油气地质学[M].北京:石油工业出版社,2014:239-273.]
[14]Zeng Jianhui.Experiment simulation of impacts of vertical heterogeneity on oil migration and accumulation in fining upwards sands[J].Petroleum Exploration & Development,2000,27(4):102-105.[曾溅辉.正韵律砂层中渗透率级差对石油运移和聚集影响的模拟实验研究[J].石油勘探与开发,2000,27(4):102-105]
[15]Wu Ying,Ning Zhengfu,Yao Yuedong.Non-Darcy flow experiment of low permeability gas reservoir and analysis of influencing factors[J].Journal of Southwest Petroleum Institute,2004,26(4):35-38.[吴英,宁正福,姚约东.低渗气藏非达西渗流实验及影响因素分析[J].西南石油学院学报,2004,26(4):35-38.]
[16]Wu Ying,Cheng Linsong,Ning Zhengfu.New calculation method of Kelinberg constrant and non-Darcy coefficient for low permeable gas reservoirs[J].Natural Gas Industry,2005,25(5):78-81.[吴英,程林松,宁正福.低渗气藏克林肯贝尔常数和非达西系数确定新方法[J].天然气工业,2005,25(5):78-81.]
[17]Zhang Yingzhi,Yang Tiejun,Wang Wenchang,et al.Development Technology Study of Extra-low Permeability Reservoir[M].Beijing:Petroleum Industry Press,1998:1-15.[张英芝,杨铁军,王文昌,等.特低渗透油藏开发技术研究[M].北京:石油工业出版社,1998:1-15.]
[18]Zou Caineng,Tao Shizhen,Gu Zhidong.Formation conditions and distribution rules of large lithologic oil-gas fields with low abundance in China[J].Acta Geologica Sinica,2006,80(11):1739-1751.[邹才能,陶士振,谷志东.中国低丰度大型岩性油气田形成条件和分布规律[J].地质学报,2006,80(11):1739-1751.]
[19]Tao Shizhen,Zou Caineng,Tao Xiaowan,et al.Study on fluid inclusion and gas accumulation mechanism of Xujiahe Formation of Upper Triassic in the central Sichuan Basin[J].Bulletin of Mineralogy,Petrology and Geochemistry,2009,28(1):1-11.[陶士振,邹才能,陶小晚,等.川中须家河组流体包裹体与天然气成藏机理[J].矿物岩石地球化学通报,2009,28(1):1-11.]
[20]Gao C N,An X P,Zhu S J,et al.Changing characteristics of ultralow permeability reservoirs during water flooding operations[J].Petroleum Science,2013,2(2):226-232.
[21]Tong Chongguang.Tectonic Evolution and Petroleum Accumulation of Sichuan Basin[M].Beijing:Geology Publishing House,1992:5-30.[童崇光.四川盆地构造演化与油气聚集[M].北京:地质出版社,1992:5-30.]
[22]Tao Shizhen,Zou Caineng,Gao Xiaohui,et al.Migration dynamic,accumulation mechanism and distribution law of oil and gas in different types[C]//27th Academic Annual
Meeting of Chinese Geophysical Society,Changsha City,Hu’nan Province,17 October,2011.[陶士振,邹才能,高晓辉,等.不同类型油气运移动力、聚集机理与分布规律[C]//中国地球物理学会第二十七届年会,湖南长沙,2011/10/17.]
[23]Liu Deliang,Song Yan,Xue Aimin,et al.Synthetical Study of Tectonic and Gas Accumulation Zone in Sichuan Basin[M].Beijing:Petroleum Industry Press,2000:12-38.[刘德良,宋岩,薛爱民,等.四川盆地构造与天然气聚集区带综合研究[M].北京:石油工业出版社,2000:12-38.]
[24]Tao S Z,Zou C N,Wang Z C,et al.Characteristics of fluid inclusions and its significance to the coaliferous gas reservoirs of the Xujiahe Formation in the central Sichuan Basin,China[J].Energy Exploration & Exploitation,2010,28(4):483-497.
[25]Mark J O,Richard E S.Mechanisms for generating overpressure in sedimentary basins:A Reevaluation[J].AAPG Bulletin,2001,85(12):2095-2118.
[26]Zhao Wenzhi,Zou Caineng,Gu Zhidong,et al.Preliminary discussion on accumulation mechanism of sandlens reservoirs[J].Petroleum Exploration & Development,2007,34(3):273-284.[赵文智,邹才能,谷志东,等.砂岩透镜体油气成藏机理初探[J].石油勘探与开发,2007,34(3):273-284.]
[27]Julia S,Peter B F,Ruarri J,et al.Insights into pore-scale controls on mudstone permeability through resedimentation experiments[J].Geology,2011,39(5):1011-1014.
[28]Valenza J,D renzek N,Marques  F,et al.Geochemical controls on shale microstructure[J].Geology,2013,41(5):611-614.
[29]Yin D Y,Pu H.Numerical simulation study on surfactant flooding for low permeability oilfield in the condition of threshold pressure[J].Journal of Hydrodynamics,2008,20(4):492-498.
[30]Klinkenberg L J.Drilling and Production Practice[M].Washington:American Petroleum Institute,1941:200-213.
[31]Zou C N,Yang Z,Tao S Z,et al.Continuous hydrocarbon accumulation over a large area as a distinguishing characteristic of unconventional petroleum:The Ordos Basin,North-Central China[J].Earth-Science Reviews,2013,126(4):358-369.
[32]Zou C N,Tao S Z,Yang Z,et al.Development of petroleum geology in China:Discussion on continuous petroleum accumulation[J].Journal of Earth Science,2013,24(5):796-803.

[1] 戴金星, 洪峰, 倪云燕, 廖凤蓉. 塔里木盆地英吉苏凹陷煤成气前景良好[J]. 天然气地球科学, 2019, 30(6): 771-782.
[2] 秦胜飞, 白斌, 袁苗, 周国晓, 杨晋东. 四川盆地中部地区海相储层煤成气来源[J]. 天然气地球科学, 2019, 30(6): 790-797.
[3] 李勇, 陈世加, 路俊刚, 肖正录, 何清波, 苏恺明, 李俊良. 近源间互式煤系致密砂岩气成藏主控因素——以川中地区须家河组天然气为例[J]. 天然气地球科学, 2019, 30(6): 798-808.
[4] 卫延召, 宋志华, 奇瑞, 王伟, 龚德瑜, 王峰. 准噶尔盆地陆梁隆起东部滴北凸起天然气成因来源再认识[J]. 天然气地球科学, 2019, 30(6): 840-849.
[5] 胡自龙, 卞保力, 刘海磊, 赵龙, 卢山, 王绍清. 准噶尔盆地大井地区天然气成因、来源与成藏过程[J]. 天然气地球科学, 2019, 30(6): 850-859.
[6] 李剑, 郝爱胜, 齐雪宁, 陈旋, 国建英, 冉启贵, 李志生, 谢增业, 曾旭, 李谨, 王瑀, 刘如红, . 中国西北地区侏罗系煤成气地球化学特征与勘探潜力[J]. 天然气地球科学, 2019, 30(6): 866-879.
[7] 杨浩珑,向祖平,袁迎中,李龙. 低渗气藏压裂气井稳态产能计算新方法[J]. 天然气地球科学, 2018, 29(1): 151-157.
[8] 田冷,李鸿范,马继翔,谢全,顾岱鸿,任效星. 基于启动压力梯度与应力敏感的致密气藏多层多级渗流模型[J]. 天然气地球科学, 2017, 28(12): 1898-1907.
[9] 房忱琛,戴金星,吴伟,刘丹,冯子齐. 中国晚古生代煤系相关的气田及其在天然气工业上的重要意义[J]. 天然气地球科学, 2016, 27(6): 960-973.
[10] 李友川,孙玉梅,兰蕾. 用乙烷碳同位素判别天然气成因类型存在问题探讨[J]. 天然气地球科学, 2016, 27(4): 654-664.
[11] 冯子齐,黄士鹏,吴伟,房忱琛,刘丹. 北美页岩气和我国煤成气发展历程对我国页岩气发展的启示[J]. 天然气地球科学, 2016, 27(3): 449-460.
[12] 胡勇, 徐轩, 李进步, 王继平, 朱秋影, 谢坤, 石林辉. 砂岩气藏充注含气饱和度实验研究[J]. 天然气地球科学, 2016, 27(11): 1979-1984.
[13] 欧阳伟平, 张冕, 刘曰武, 万义钊, 袁冬蕊, 李杉杉. 基于三参数非线性渗流的致密气藏数值试井分析[J]. 天然气地球科学, 2016, 27(11): 2030-2036.
[14] 陶士振, 李昌伟, 黄纯虎, 曾溅辉, 张响响, 杨春, 高晓辉, 公言杰. 煤系致密砂岩气运聚动力与二维可视化物理模拟研究——以川中地区三叠系须家河组致密砂岩气为例[J]. 天然气地球科学, 2016, 27(10): 1767-1777.
[15] 戴金星,倪云燕,黄士鹏,龚德瑜,刘丹,冯子齐,彭威龙,韩文学. 次生型负碳同位素系列成因[J]. 天然气地球科学, 2016, 27(1): 1-7.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王连进;叶加仁;. 残余盆地特征及研究方法[J]. 天然气地球科学, 2000, 11(3): 8 -12 .
[2] 徐秀芹;彭晓玉;胡海东;. 塔里木盆地石油和天然气储量经济价值评估方法研究[J]. 天然气地球科学, 2003, 14(3): 232 -234 .
[3] 徐永昌;刘文汇;沈平;陶明信;郑建京;. 天然气地球化学的重要分支――稀有气体地球化学[J]. 天然气地球科学, 2003, 14(3): 157 -166 .
[4] 赵靖舟. 论幕式成藏[J]. 天然气地球科学, 2005, 16(4): 469 -476 .
[5] 王卓卓;梁江平;李国会;施立志. 成岩作用对储层物性的影响及与沉积环境的关系——以鄂尔多斯盆地劳山地区为例[J]. 天然气地球科学, 2008, 19(2): 171 -177 .
[6] 付小东 秦建中 腾格尔 王小芳. 固体沥青——反演油气成藏及改造过程的重要标志[J]. 天然气地球科学, 2009, 20(2): 167 -173 .
[7] 江厚顺, 张祎. 高5块低渗油气田产量预测方法分析[J]. 天然气地球科学, 2010, 21(3): 385 -388 .
[8] 郭金凤, 李洪香, 苏俊青, 付东立, 李会慎, 杨冰. 滨海断鼻沙三段油气成藏特征[J]. 天然气地球科学, 2010, 21(4): 554 -558 .
[9] 付立新, 楼达, 冯建元, 司国帅, 严慧中. 歧口凹陷中位序、低位序潜山地质特征及油气勘探潜力[J]. 天然气地球科学, 2010, 21(4): 559 -565 .
[10] 李莲明, 李治平, 车艳. 一种定量研究非线弹性岩石体积应变新方法[J]. 天然气地球科学, 2011, 22(1): 129 -135 .