天然气地球科学

• 非常规天然气 • 上一篇    下一篇

四川盆地志留系页岩气超压形成与破坏机理及主控因素

李双建1,2,袁玉松1,孙炜1,孙冬胜1,金之钧1   

  1. 1.中国石化石油勘探开发研究院,北京 100083;2.页岩油气富集机理与有效开发国家重点实验室,北京 100083
  • 收稿日期:2015-09-30 修回日期:2015-12-03 出版日期:2016-05-10 发布日期:2016-05-10
  • 作者简介:李双建(1978-),男,河北泊头人,高级工程师,主要从事盆地构造与油气保存条件研究. E-mail:lishuangjian.syky@sinopec.com.
  • 基金资助:
    国家重点基础研究发展计划(编号:2012CB412800);国家科技重大专项(编号:2016ZX05005-001);国家自然科学基金(编号:40739904)联合资助.

The formation and destroyment mechanism of shale gas overpressure and its main controlling factors in Silurian of Sichuan Basin

Li Shuang-jian1,2,Yuan Yu-song1,Sun Wei1,Sun Dong-sheng1,Jin Zhi-jun1,2   

  1. 1.Research Institute of Petroleum Exploration and Production,SINOPEC,Beijing 100083,China;2.State Key Laboratory of Shale Oil and Gas Accumulation Mechanism and the Effective Development,Beijing 100083,China
  • Received:2015-09-30 Revised:2015-12-03 Online:2016-05-10 Published:2016-05-10

摘要: 以川东焦页1井和彭页1井为解剖实例,利用声波和密度测井交会图判别页岩气超压形成机制,利用流体包裹体和PVTSIM软件恢复烃源岩生烃和地层抬升过程中页岩气层流体压力演化,通过裂缝发育特征、地层抬升时代和构造期次的研究,探讨了影响页岩气超压演变的主控因素。研究表明:四川盆地志留系页岩气气藏超压形成的机制主要是流体膨胀,流体膨胀主要是烃源岩生烃作用造成的。燕山期以来的地层抬升过程中,流体压力总体是降低的,但是由于页岩气的储层压缩回弹率低,储层连通性差且不含地层水等特点,使得流体压力的降低不足以弥补地层剥蚀的影响,造成整个抬升过程中页岩气储层的流体压力系数进一步增加。燕山期以来彭页1井区经历至少3期构造运动的改造,初始抬升期为130Ma,与之相比,焦页1井区初始抬升期为90Ma,经历的构造改造作用弱,表现为焦页1井发育低角度高导缝和很少量的高阻缝,而彭页1井发育高角度高导缝和大量高阻缝。因此,晚期构造抬升的早晚、多期应力场的叠加改造和高角度裂缝的发育程度是影响页岩气超压后期保持的控制因素。

关键词: 超压, 页岩气, 裂缝, 保存条件, 志留系, 四川盆地

Abstract: Shale gas Well JY1 and Well PY1 eastern Sichuan Basin have been taken as examples to study the overpressure evolution in shale gas.The log intersection diagram between interval transit time and density has been used to distinguish the mechanic of overpressure. Fluid inclusion and PVTsim software have been used to recover the pressure evolution in the process of hydrocarbon generation and tectonic erosion.According to the research of fracture,time of uplift and times of tectonic deformation,the controlling factors on the evolution of shale gas overpressure have been discussed.The conclusion can be drawn that the mechanic of shale gas overpressure in Silurian is fluid expansion,which is caused by hydrocarbon generation.The fluid pressure decreased in the uplift process since Yanshanian generally.However,due to low porosity rebound ratio,poor pore connectivity and low formation water content,the decrement of fluid pressure cannot offset the effect of erosion,which caused the increasing of fluid pressure coefficient in the uplifting process.Well PY1 has been experienced three-period tectonic deformation since Yanshanian and its initial uplift time was 130Ma.In contrast,Well JY1 area has been experienced weaker tectonic deformation,and its initial uplift was 90Ma.As a result,low angel fractures and little high resistance fractures developed in Well JY1,high angle fractures and lots of high resistance fractures developed in Well PY1.It can be said that the development degree of high angel crack,time of uplifting and superposition of stress field are main reasons to affect the preservation of shale gas overpressure.

Key words: Overpressure, Shale gas, Crack, Preservation, Silurian, Sichuan Basin

中图分类号: 

  • TE122.3

[1]Wang Zhigang.Breakthrough of Fuling shale gas exploration and development and its inspiration[J].Oil & Gas Geology,2015,36(1):1-6.[王志刚.涪陵页岩气勘探开发重大突破与启示[J].石油与天然气地质,2015,36(1):1-6.]
[2]Hao Fang,Zou Huayao,Lu Yongchao.Mechanisms of shale gas storage:Implications for shale gas exploration in China[J].AAPG Bulletin,2013,97(8):1325-1346.
[3]Guo Xunsheng.Rules if two-factor enrichment for marine shale gas,southern China:Understanding from the Longmaxi Formation shale gas in Sichuan Basin and its surrounding area[J].Acta Geologica Sinica,2015,88(7):1209-1218.[郭旭升.南方海相页岩气“二元富集”规律——四川盆地及周缘龙马溪组页岩气勘探实践认识[J].地质学报,2015,88(7):1209-1218.]
[4]Guo Tonglou,Liu Ruobing.Implications from marine shale gas exploration breakthrough in complicated structural area at high thermal stage:Taking Longmaxi Formation in Well JY1 as an example[J].Natural Gas Geosciecnce,2013,24(4):643-651.[郭彤楼,刘若冰.复杂构造区高演化程度海相页岩气勘探突破的启示——以四川盆地东缘JY1井为例[J].天然气地球科学,2013,24(4):643-651.]
[5]Nie Haikuan,Tang Xuan,Bian Ruikang.Controlling factors for shale gas accumulation and prediction of potential development area in shale gas reservoir of south China[J].Acta Petrolei Sinica,2009,30(4):484-491.[聂海宽,唐玄,边瑞康.页岩气成藏控制因素及中国南方页岩气发育有利区预测[J].石油学报,2009,30(4):484-491.]
[6]Dong Dazhong,Zou Caineng,Yang Hua,et al.Progress and prospects of shale gas exploration and development in China[J].Acta Petrolei Sinica,2012,33(supplement 1):107-114.[董大忠,邹才能,杨桦,等.中国页岩气勘探开发进展与发展前景[J].石油学报,2012,33(增刊1):107-114.]
[7]O’Conner S,Swarbrick R E,Lahann R W.Geologically driven pore fluid pressure models and their implications for petroleum exploration.Introduction to thematic set[J].Geofluids,2011,11(4):343-348.
[8]Eaton B A.Graphical method predicts geopressures worldwide[J].World Oil,1976,1(6):51-56.
[9]Guo Xiaowen,He Sheng,Zheng Lunju,et al.A quantitative model for the overpressure caused by oil generation and its influential factors[J].Acta Petrolei Sinica,2011,32(4):637-644.[郭小文,何生,郑伦举,等.生油增压定量模型及影响因素[J].石油学报,2011,32(4):637-644.]
[10]Yuan Guanghui,Cao Yingchang,Jia Zhenzhen,et al.Research progress on anomalously high porosity zones in deeply buried clastic reservoirs in petroliferous basin[J].Natural Gas Geosciecnce,2015,26(1):28-42.[远光辉,操应长,贾珍臻,等.含油气盆地中深层碎屑岩储层异常高孔带研究进展[J].天然气地球科学,2015,26(1):28-42.]
[11]Osborne M J,Swarbrick R E.Mechanisms for generating overpressure in sedimentary basins:A reevaluation[J].AAPG Bulletin,1997,81(6):1023-1041.
[12]Tingay M R P,Hillis R R,Swarbrick R E,et al.Origin of overpressure and pore pressure prediction in the Baram Delta Province,Brunei[J].AAPG Bulletin,2009,93(1):51-74.
[13]Tingay M,Hillis R,Swarbrick R,et al.“Vertically transferred” overpressures in Brunei:Evidence for a new mechanism for the formation of high magnitude overpressures[J].Geology,2007,35(11):1023-1026.
[14]Lahann R W,Swarbrick R E.Overpressure generation by load transfer following shale framework weakening due to smectite diagenesis[J].Geofluids,2011,11(4):362-375.
[15]Hedberg H D.Relation of methane generation to undercompacted shales,shale diapirs,and mud volcanoes[J].AAPG Bulletin,1974,58(4):661-673.
[16]Barker C.Calculated volume and pressure changes during thermal cracking of oil to gas in reservoirs[J].AAPG Bulletin,1990,74(8):1254-1261.
[17]Yuan Haifeng,Xu Guosheng,Wang Guozhi,et al.Phase evolution during hydrocarbon accumulation and exploration prospect for Sinian reservoirs in Central Sichuan Basin,China[J].Journal of Chendu University of Technology:Science & Technology Edition,2009,36(6):662-668.[袁海锋,徐国盛,王国芝,等.川中地区震旦系油气成藏过程的相态演化与勘探前景[J].成都理工大学学报:自然科学版,2009,36(6):662-668.]
[18]Liu D H,Xiao X M,Mi J K,et al.Determination of trapping pressure and temperature of petroleum inclusions using PVT simulation software:A case study of Lower Ordovician carbonates from the Lunnan Low Uplift,Tarim Basin[J].Marine and Petroleum Geology,2003,20(1):29-43.
[19]Liu Dehan,Xiao Xianming,Tian Hui,et al.Methodology and results of dynamic and thermodynamic simulation for oil-cracked gas pool of Puguang[J].Natural Gas Geosciences,2010,21(2):175-184.[刘德汉,肖贤明,田辉,等.论普光原油裂解气藏的动力学和热力学模拟方法与结果[J].天然气地球科学,2010,21(2):175-184.]
[20]Tian Hui,Xiao Xianming,Ronald W T,et al.New insights into the volume and pressure changes during the thermal cracking of oil to gas in reservoirs:Implications for the in-situ accumulation of gas cracked from oils[J].AAPG Bulletin,2008,92(2):181-200.
[21]Gao Jian,He Sheng,Yi Jizheng.Discovery of high density methane inclusions in Jiaoshiba shale gas field and its significance[J].Oil & Gas Geology,2015,36(3):472-480.[高健,何生,易积正.焦石坝页岩气田中高密度甲烷包裹体的发现及其意义[J].石油与天然气地质,2015,36(3):472-480.]
[22]Fang Chaohe,Huang Zhilong,Wang Qiaozhi,et al.Cause and significance of the ultralow water saturation in gas-enriched shale reservoir[J].Natural Gas Geosciecnce,2014,25(3):471-476.[方朝亮,黄志龙,王巧智,等.富含气页岩储层超低含水饱和度成因及意义[J].天然气地球科学,2014,25(3):471-476.]
[23]Zhang Yu,Yan Jianping,Jia Xiangjuan,et al.The pore size distribution and its relationship with shale gas capacity in organic-rich mudstone of Wufeng-Longmaxi Formations,Sichuan Basin[J].Natural Gas Geoscience,2015,26(9):1775-1762.[张瑜,闫建萍,贾祥娟,等.四川盆地五峰组—龙马溪组富有机质泥岩孔径分布及其与页岩含气性关系[J].天然气地球科学,2015,26(9):1755-1762.]
[24]Mei Lianfu,Liu Shaoqian,Tang Jiguang,et al.Mesozoic intracontinental progressive deformation in western Hunan Hubei-eastern Sichuan provinces of China:Evidence from apatite fission track and balanced cross section[J].Earth Science:Journal of China University of Geosciences,2010,35(2):161-174.[梅廉夫,刘昭茜,汤济广,等.湘鄂西—川东中生代陆内递进扩展变形:来自裂变径迹和平衡剖面的证据[J].地球科学:中国地质大学学报,2010,35(2):161-174.]
[25]Wang Erchie,Meng Kai,Su Zhe,et al.Block rotation:Tectonic response of the Sichuan Basin to the southeastward growth of the Tibetan plateau along the Xianshuihe-Xiaojiang fault[J].Tectonics,2014,33(5):686-718.

[1] 李国会, 康德江, 姜丽娜, 姜瀚, 李淼, 孙海雷, 伍英. 松辽盆地北部扶余油层致密油成藏条件及甜点区优选[J]. 天然气地球科学, 2019, 30(8): 1106-1113.
[2] 黄东, 杨光, 杨智, 杨天泉, 白蓉, 李育聪, 戴鸿鸣. 四川盆地致密油勘探开发新认识与发展潜力[J]. 天然气地球科学, 2019, 30(8): 1212-1221.
[3] 沈骋, 赵金洲, 任岚, 范宇. 四川盆地龙马溪组页岩气缝网压裂改造甜点识别新方法[J]. 天然气地球科学, 2019, 30(7): 937-945.
[4] 王科, 李海涛, 李留杰, 张庆, 补成中, 王志强. 3种常用页岩气井经验递减方法——以四川盆地威远区块为例[J]. 天然气地球科学, 2019, 30(7): 946-954.
[5] 张晗. 四川盆地龙马溪组页岩储层缝网导流能力优化[J]. 天然气地球科学, 2019, 30(7): 955-962.
[6] 赵正望, 唐大海, 王小娟, 陈双玲. 致密砂岩气藏天然气富集高产主控因素探讨——以四川盆地须家河组为例[J]. 天然气地球科学, 2019, 30(7): 963-972.
[7] 王勇飞, 赵向原, 刘成川. 川东北元坝地区长兴组礁滩相储层裂缝特征及主控因素[J]. 天然气地球科学, 2019, 30(7): 973-981.
[8] 苟启洋, 徐尚, 郝芳, 舒志国, 杨峰, 陆扬博, 张爱华, 王雨轩, 程璇, 青加伟, 高梦天. 基于灰色关联的页岩储层含气性综合评价因子及应用——以四川盆地焦石坝区块为例[J]. 天然气地球科学, 2019, 30(7): 1045-1052.
[9] 周国晓, 魏国齐, 胡国艺. 四川盆地龙岗与元坝气田陆相油气系统差异[J]. 天然气地球科学, 2019, 30(6): 809-818.
[10] 倪云燕, 廖凤蓉, 姚立邈, 高金亮, 张蒂嘉. 川中地区须家河组天然气氢同位素特征及其对水体咸化的指示意义[J]. 天然气地球科学, 2019, 30(6): 880-896.
[11] 贾爱林, 唐海发, 韩永新, 吕志凯, 刘群明, 张永忠, 孙贺东, 黄伟岗, 王泽龙. 塔里木盆地库车坳陷深层大气田气水分布与开发对策[J]. 天然气地球科学, 2019, 30(6): 908-918.
[12] 胡东风. 四川盆地东南缘向斜构造五峰组—龙马溪组常压页岩气富集主控因素[J]. 天然气地球科学, 2019, 30(5): 605-615.
[13] 郭芪恒, 金振奎, 耿一凯, 赵建华, 常睿, 崔学敏, 王金艺. 四川盆地龙马溪组页岩中碳酸盐矿物特征及对储集性能的影响[J]. 天然气地球科学, 2019, 30(5): 616-625.
[14] 崔春兰, 董振国, 吴德山. 湖南保靖区块龙马溪组岩石力学特征及可压性评价[J]. 天然气地球科学, 2019, 30(5): 626-634.
[15] 王秀平, 牟传龙, 肖朝晖 , 郑斌嵩 , 陈尧 , 王启宇. 鄂西南地区五峰组—龙马溪组连续沉积特征[J]. 天然气地球科学, 2019, 30(5): 635-651.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 付广;王剑秦. 地壳抬升对油气藏保存条件的影响[J]. 天然气地球科学, 2000, 11(2): 18 -23 .
[2] 周兴熙;. 库车油气系统油气藏相态分布及其控制因素[J]. 天然气地球科学, 2004, 15(3): 205 -213 .
[3] 黄安敏;裴建翔;陈志宏;李绪深;李林;. 油气储层预测技术在琼东南盆地BD13区的应用[J]. 天然气地球科学, 2006, 17(4): 518 -522 .
[4] 胡守志,付晓文,王廷栋,李延均 . 储层中的沥青沉淀带及其对油气勘探的意义[J]. 天然气地球科学, 2007, 18(1): 99 -103 .
[5] 李士祥;胡明毅;李霞;. 榆林气田山西组2段砂岩成岩作用及孔隙演化[J]. 天然气地球科学, 2005, 16(2): 200 -205 .
[6] 刘文汇;黄第藩;熊传武;徐永昌;. 成烃理论的发展及国外未熟―低熟油气的分布与研究现状[J]. 天然气地球科学, 1999, 10(1-2): 1 -22 .
[7] 胡雄;李延钧;陈新领;江波;马立协;付晓文;王强;梁艳;. 柴北缘马海地区油气全烃地球化学特征与成因[J]. 天然气地球科学, 2005, 16(5): 612 -616 .
[8] 朱小燕;孙卫;李建霆;刘宏义;李爱琴;刘一仓;田随良;胡建基 . 陇东城壕—南梁地区长6储层特征研究[J]. 天然气地球科学, 2007, 18(6): 903 -907 .
[9] 张朝;张廷山;魏祥峰;戴传瑞;王秀林 . 也门X区块下白垩统沉积相分析[J]. 天然气地球科学, 2008, 19(06): 835 -839 .
[10] 朱维耀;宋洪庆; 何东博;王明 ;贾爱林;胡永乐 . 含水低渗气藏低速非达西渗流数学模型及产能方程研究[J]. 天然气地球科学, 2008, 19(05): 685 -689 .