天然气地球科学

• 天然气开发 • 上一篇    下一篇

考虑启动压力梯度的致密砂岩储层渗透率分形模型

白瑞婷,李治平,南珺祥,赖枫鹏,李洪,韦青   

  1. 1.中国地质大学(北京)非常规天然气能源地质评价与开发工程北京市重点实验室,能源学院,北京 100083;
    2.低渗透油气田勘探开发国家工程实验室,陕西 西安 710018
  • 收稿日期:2015-04-09 修回日期:2015-07-20 出版日期:2016-01-10 发布日期:2016-01-10
  • 作者简介:白瑞婷(1983-),女,山东聊城人,博士研究生,主要从事油气田开发理论方法研究. E-mail:ruitingwhite@163.com.
  • 基金资助:

    国家科技重大专项课题“新一代油藏数值模拟软件”(编号:2011ZX05009-006);中国石油长庆油田分公司科学研究与技术开发项目“致密油储层定量评价技术研究”(编号:技2014-18)联合资助.

The fractal permeability model in tight sand reservoir accounts for start-up gradient

Bai Rui-ting,Li Zhi-ping,Nan Jun-xiang,Lai Feng-peng,Li Hong,Wei Qing   

  1. 1.China University of Geosciences(Beijing),Beijing Key Laboratory of Unconventional Natural Gas Geology Evaluation
    and Development Engineering,School of Energy and Resource,Beijing 100083,China;
    (JP2)2.National Engineering Laboratory for Exploration and Development of Low-Permeability Oil and Gas Fields,Xi’an 710018,China
  • Received:2015-04-09 Revised:2015-07-20 Online:2016-01-10 Published:2016-01-10

摘要:

渗透率是描述储层渗流能力的物性参数。利用孔隙结构参数估算储层渗透率的经验公式是建立在理想化模型基础上的。在致密砂岩储层中,由于孔隙度、渗透率较低,喉道细小,边界层作用比较显著,流体渗流阻力大,存在明显的非达西渗流特征。与岩心分析方法相比,利用这种常规计算方法得到的渗透率与岩心渗透率偏差较大,无法准确进行产能计算。基于分形理论,考虑了毛细管迂曲度的分形维数和流体的非线性流动特征,利用毛管渗流模型建立了启动压力梯度存在时的渗透率分形模型。结果表明渗透率为储层孔隙度φ,储层孔喉分形维数Df、毛细管迂曲度分形维数DT以及最大孔喉半径rmax的函数,充分体现了储层微观孔隙结构和分形维数对渗透率的影响。通过与前人研究结果对比分析,新模型计算值相对误差较小,与实际岩心分析数据拟合趋势基本一致,表明新模型可以较好地预测致密油藏的渗透率。

关键词: 渗透率, 孔隙度, 启动压力梯度, 分形维数, 迂曲度, 孔喉结构

Abstract:

Permeability is a key factor to reflect seepage ability of reservoirs.The empirical formula of using pore structure parameters to estimate reservoir permeability is based on the idealized model.Tight sandstone reservoirs are mainly characterized by small reservoir pores,fine throats,and high seepage resistance.These properties cause liquids to flow through such ultra-low permeability porous media,which has the characteristic of non-Darcy flow.Compared with core analytical method,there is a great deviation from real permeability using conventional computing method to get permeability of tight sandstone reservoirs,which is not suitable for productivity calculation.Based on the fractal theory and considering the fractal dimension for capillary tortuosity and nonlinear flow characteristics of liquids,a fractal permeability model is derived which considers threshold pressure gradient.Results show that the permeability is a function of porosity,fractal dimension for pore throat,capillary tortuosity and maximum radius of pore throat,which reflects the effects of microscopic pore structure and the fractal dimension on reservoir permeability.Compared with the previous work,the calculated results had less relative error and were consistent with core analysis results.The new model will be helpful to predict permeability of tight sandstone reservoirs.

Key words: Permeability, Porosity, Threshold pressure gradient, Fractal dimension, Tortuosity, Pore-throat structure

中图分类号: 

  • TE122.2+3

[1]Liu Fenxia,Cheng Qirong,Yuan Haihan,et al.Interpretation for well logging data from low porosity and permeability reservoirs:Examplified by porosity and permeability evaluation for Upper Paleozoic reservoirs in the central gasfields of the Ordos Basin[J].Geological Journal of Universities,1996,2(1):65-74.[刘芬霞,程启荣,原海涵,等.低孔低渗储层测井解释方法研究——以陕甘宁盆地中部气田上古生界求孔隙度、渗透率为例[J].高校地质学报,1996,2(1):65-74.]
[2]Shi Ping,Tang Jun.Application of genetic algorithm to the optimization of the calculation formula for permeability of tight sandstone reservoir:Taking the number 8 of the Yanchang Formation of Huan County Oilfield in Ordos Basin as an example[J].Journal of Inner Mongolia University:Natural Science Edition,2014,45(4):365-371.[石萍,唐俊.遗传算法在致密砂岩储层渗透率计算公式优化中的应用——以鄂尔多斯盆地环县地区延长组长8段为例[J].内蒙古大学学报:自然科学版,2014,45(4):365-371.]
[3]Zhang Lihua,Pan Baozhi,Li Ning,et al.Reservoir classification method based on three water model to evaluate low porosity and low permeability reservoir[J].Well Logging Technology,2011,35(1):31-35.[张丽华,潘保芝,李宁,等.基于三水模型的储层分类方法评价低孔隙度低渗透率储层[J].测井技术,2011,35(1):31-35.]
[4]Mandlbrot B B.The Fractal Geometry of Nature[M].San Francisco:W.H.Freeman,1982.
[5]Jia Fenshu,Shen Pingping,Li Kewen.Study on the fractal feature of pore structure of the sandstone [J].The Fault Block Oil and Gas Field,1995,2(1):16-21.[贾芬淑,沈平平,李克文.砂岩孔隙结构的分形特征及应用研究[J].断块油气田,1995,2(1):16-21.]
[6]He Chengzu,Hua Mingqi.Fractal geometry description of reservoir pore structure[J].Oil and Gas Geology,1998,19(1):15-23.[贺承祖,华明琪.储层孔隙结构的分形几何描述[J].石油与天然气地质,1998,19(1):15-23.]
[7]Yu B M,Cheng P.A fractal model for permeability of bi-dispersed porous media [J].International Journal of Heat & Mass Transfer,2002,45(14):2983-2993.
[8]Li Liuren,Yuan Shiyi,Hu Yongle.A model for permeability and porosity of fractal porous media[J].Journal of Xi’an Shiyou University:Natural Science Edition,2010,25(3):49-51,74.[李留仁,袁士义,胡永乐.分形多孔介质渗透率与孔隙度理论关系模型[J].西安石油大学学报:自然科学版,2010,25(3):49-51,74.]
[9]Liu Junliang,Tian Chang’an,Zeng Yanwei,et al.Fractal dimensionality dependence of microstructural parameters and permeability in fractal porous media[J].Advances in water Science,2006,17(6):812-817.[刘俊亮,田长安,曾燕伟,等.分形多孔介质孔隙微结构参数与渗透率的分维关系[J].水科学进展,2006,17(6):812-817.]
[10]Zheng Bin,Li Juhua.A new fractal permeability model for porous media based on kozeny-carman equation[J].Natural Gas Geoscience,2015,26(1):193-198.[郑斌,李菊花.基于Kozeny-Carman方程的渗透率分形模型[J].天然气地球科学,2015,26(1):193-198.]
[11]Xu P,Yu B M.Developing a new form of permeability and Kozeny-Carman constant for homogeneous porous media by means of fractal geometry[J].Advances in Water Resources,2008,31(1):74-81.
[12]Wu J S,Yu B M.A fractal resistance model for flow through porous media[J].International Journal of Heat & Mass Transfer,2007,50(19):3925-3932.〖JP〗
[13]Yu B M,Li J H.A Geometry model for tortuosity of flow path in porous media[J].Chinese Physics Letters,2004,21(8):1569-1571.
[14]Costa A.Permeability-porosity relationship:A reexamination of the Kozeny-Carman equation based on a fractal pore-space geometry assumption[J].Geophysical Research Letters,2006,33(2):L02318.
[15]Huang Yanzhang.The Flow Mechanism of Low Permeability Reservoir[M].Beijing:Petroleum Industry Press,1998.[黄延章.低渗透油层渗流机理[M].北京:石油工业出版社,1998.]
[16]Li Zhaomin,Cai Guoyan.Non Newtonian Fluid Flow[M].Dongying:China University of Petroleum Press,1998:216-218.[李兆敏,蔡国琰.非牛顿流体力学[M].东营:石油大学出版社,1998:216-218.]
[17]Cheng Qigui,Lei Qiming,Xiong Weiliang.Theory and technology of effective-displacement-pressure system of tight oil reservoir[J].Natural Gas Geoscience,2012,23(3):570-576.[程启贵,雷启鸿,熊维亮.致密油藏有效驱替压力系统建立理论与技术[J].天然气地球科学,2012,23(3):570-576.]
[18]Lou Yu,Zhu Weiyao,Song Hongqing,et al.Apparent permeability model for fractal porous media considering the effect of solid-liquid interface[J].Journal of Northeast Petroleum University,2014,38(2):69-73.[娄钰,朱维耀,宋洪庆,等.考虑固液界面作用的表观渗透率分形模型[J].东北石油大学学报,2014,38(2):69-73.]
[19]Ma Xinfang,Zhang Shicheng,Lang Zhaoxin.Calculation of fractal dimension of pore structure by using subsection regression method[J].Journal of China University of Petroleum:Edition of Natural Science,2004,28(6):54-56,70.[马新仿,张士诚,郎兆新.用分段回归方法计算孔隙结构的分形维数[J].石油大学学报:自然科学版,2004,28(6):54-56,70.]
[20]Yu Boming,Xu Peng,Zou Mingqing,et al.Transport Physics for Fractal Porous Media[M].Beijing:Science Press,2014:5-90.[郁伯铭,徐鹏,邹明清,等.分形多孔介质输运物理[M].北京:科学出版社,2014:5-90.]
[21]Xu Shouyu,Wang Shuping.Fractal feature about the micro-structure in sandstone reservoir:Taking the Paleogene Shahejie Formation in Shengtuo Oilfield as an example[J].Natural Gas Geoscience,2013,24(5):886-893.[徐守余,王淑萍.砂岩储层微观结构分形特征研究——以胜坨油田古近系沙河街组储层为例[J].天然气地球科学,2013,24(5):886-893.]
[22]Zhang Xian’guo,Zhang Tao,Lin Chengyan.Pore structure evaluation of low permeability reservoir based on pore fractal features[J].Lithologic Reservoirs,2013,25(6):40-45.[张宪国,张涛,林承焰.基于孔隙分形特征的低渗透储层孔隙结构评价[J].岩性油气藏,2013,25(6):40-45.]
[23]Jiang Wen,Tang Shuheng,Zhang Jingping,et al.Characteristics of pore permeability of highly metamorphic bone coal[J].Coal Geology & Exploration,2013,41(4):9-13.[姜文,唐书恒,张静平.基于压汞分形的高变质石煤孔渗特征分析[J].煤田地质与勘探,2013,41(4):9-13.]
[24]Jia Chengzao,Zou Caineng,Li Jianzhong.Assessment criteria,main types,basic features and resource prospects of the tight oil in China[J].Acta Petrolei Sinica,2012,33(3):343-350.[贾承造,邹才能,李建忠.中国致密油评价标准·主要类型·基本特征及资源前景[J].石油学报,2012,33(3):343-350.]
[25]Chen Zhuanzhuan,Gao Yongli,Gaoi Hui.The microscopic pore-throat structure characteristic of Chang 7 in Longdong area[J].Journal of Xi’an Shiyou University:Natural Science Edition,2014,29(2):29-33.[陈转转,高永利,高辉.陇东地区长7致密储层微观孔喉结构特征[J].西安石油大学学报:自然科学版,2014,29(2):29-33.]
[26]Yang Feng,Ning Zhengfu,Wang Qing,et al.Fractal characteristics of nanopore in Shales[J].Natural Gas Geoscience,2014,25(4):618-623.[杨峰,宁正福,王庆,等.页岩纳米孔隙分形特征[J].天然气地球科学,2014,25(4):618-623.]
[27]Xie Xiaoyong,Guo Xinjiang,Jiang Zujun,et al.Study on formation damage and fractal feature of pore structure[J].Natural Gas Geoscience,2011,22(6):1128-1132.[谢晓永,郭新江,蒋祖军,等.储层孔隙结构分形特征与损害研究[J].天然气地球科学,2011,22(6):1128-1132.]

[1] 任茜莹,代金友,穆中奇. 气藏采收率影响因素研究与启示——以靖边气田A井区为例[J]. 天然气地球科学, 2018, 29(9): 1376-1382.
[2] 程鸣,傅雪海,张苗,程维平,渠丽珍. 沁水盆地古县区块煤系“三气”储层覆压孔渗实验对比研究[J]. 天然气地球科学, 2018, 29(8): 1163-1171.
[3] 李滔,李闽,张烈辉,田山川,赵潇雨,郑玲丽. 微多孔介质迂曲度与孔隙结构关系[J]. 天然气地球科学, 2018, 29(8): 1181-1189.
[4] 游利军,王哲,康毅力,张杜杰. 致密砂岩孔渗对盐析的响应实验研究[J]. 天然气地球科学, 2018, 29(6): 866-872.
[5] 孟凡坤,雷群,徐伟,何东博,闫海军,邓惠. 应力敏感碳酸盐岩复合气藏生产动态特征分析[J]. 天然气地球科学, 2018, 29(3): 429-436.
[6] 王清辉,冯进. 烃源岩TOC测井评价方法及应用——以珠江口盆地文昌组为例[J]. 天然气地球科学, 2018, 29(2): 251-258.
[7] 王小垚,曾联波,周三栋,史今雄,田鹤. 低阶煤储层微观孔隙结构的分形模型评价[J]. 天然气地球科学, 2018, 29(2): 277-288.
[8] 杨浩珑,向祖平,袁迎中,李龙. 低渗气藏压裂气井稳态产能计算新方法[J]. 天然气地球科学, 2018, 29(1): 151-157.
[9] 端祥刚,安为国,胡志明,高树生,叶礼友,常进. 四川盆地志留系龙马溪组页岩裂缝应力敏感实验[J]. 天然气地球科学, 2017, 28(9): 1416-1424.
[10] 李阳,李树同,牟炜卫,闫灿灿. 鄂尔多斯盆地姬塬地区长6段致密砂岩中黏土矿物对储层物性的影响[J]. 天然气地球科学, 2017, 28(7): 1043-1053.
[11] 张涛,李相方,王永辉,石军太,杨立峰,孙政,杨剑,张增华. 页岩储层特殊性质对压裂液返排率和产能的影响[J]. 天然气地球科学, 2017, 28(6): 828-838.
[12] 王妍妍,王卫红,胡小虎,刘华,郭艳东. 诱导渗透率场中压裂水平井压力动态分析模型[J]. 天然气地球科学, 2017, 28(5): 785-791.
[13] 崔亚星,熊伟,胡志明,左罗,高树生. 等温条件下页岩储层视渗透率随压力变化规律研究[J]. 天然气地球科学, 2017, 28(4): 514-520.
[14] 倪小明, 李志恒,王延斌,吴建光. 沁水盆地中部断层发育区煤层气开发有利块段优选[J]. 天然气地球科学, 2017, 28(4): 602-610.
[15] 王志荣,贺平,郭志伟,陈玲霞,徐培远. 水力压裂条件下“三软”煤层压裂渗透模型及应用[J]. 天然气地球科学, 2017, 28(3): 349-355.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 贾进斗. 准噶尔盆地天然气藏地质特征及分布规律[J]. 天然气地球科学, 2005, 16(4): 449 -455 .
[2] 史斗. 黑海水合物气资源评价[J]. 天然气地球科学, 2003, 14(6): 519 -524 .
[3] 刘洪林;李景明;王红岩;赵庆波;. 内蒙古东部低煤阶含煤盆地群的煤层气勘探前景[J]. 天然气地球科学, 2005, 16(6): 771 -775 .
[4] 郭龙,陈践发,苗忠英. 一种新的TOC含量拟合方法研究与应用[J]. 天然气地球科学, 2009, 20(6): 951 -956 .
[5] 朱起煌; . 波兰新鲁达煤矿区上石炭统煤层气的同位素地化特征[J]. 天然气地球科学, 1992, 3(6): 41 -47 .
[6] 楚美娟,郭正权,齐亚林,程党性. 鄂尔多斯盆地延长组长8储层定量化成岩作用及成岩相分析[J]. 天然气地球科学, 2013, 24(3): 477 -484 .
[7] 郑斌,李菊花. 基于Kozeny—Carman方程的渗透率分形模型[J]. 天然气地球科学, 2015, 26(1): 193 -198 .
[8] 汪吉林,朱炎铭,宫云鹏,方辉煌. 重庆南川地区龙马溪组页岩微裂缝发育影响因素及程度预测[J]. 天然气地球科学, 2015, 26(8): 1579 -1586 .