天然气地球科学

• 综述与评述 • 上一篇    下一篇

次生型负碳同位素系列成因

戴金星,倪云燕,黄士鹏,龚德瑜,刘丹,冯子齐,彭威龙,韩文学   

  1. 中国石油勘探开发研究院,北京 100083
  • 收稿日期:2015-12-15 修回日期:2015-01-05 出版日期:2016-01-10 发布日期:2016-01-10
  • 作者简介:戴金星(1935-),男,浙江瑞安人,中国科学院院士,教授级高级工程师,主要从事天然气地质学和地球化学研究. E-mail:djx@petrochina.com.cn.
  • 基金资助:

    中国石油天然气股份有限公司油气勘探重大科技项目“中国煤成气地球化学与成藏机制规律研究”(编号:2014B-0608)资助.

Origins of secondary negative carbon isotopic series in natural gas

Dai Jin-xing,Ni Yun-yan,Huang Shi-peng,Gong De-yu,Liu Dan,Feng Zi-qi,Peng Wei-long,Han Wen-xue   

  1. Research Institute of Petroleum Exploration and Development,Beijing 100083,China
  • Received:2015-12-15 Revised:2015-01-05 Online:2016-01-10 Published:2016-01-10

摘要:

烷烃气碳同位素系列类型有3种:随烷烃气分子碳数递增,δ13C值依次递增称为正碳同位素系列,是有机成因原生烷烃气的一个特征;随烷烃气分子碳数递增,δ13C值依次递减称为负碳同位素系列;不按以上2种规律而出现不规则增减则称为碳同位素倒转。负碳同位素系列又分为原生型和次生型2种。原生型负碳同位素系列是无机成因的;次生型负碳同位素系列是正碳同位素系列经次生改造来的,出现在过成熟的页岩气和煤成气中。关于次生型负碳同位素系列成因的观点繁多,包括:二次裂解、扩散、过渡金属和水介质在250~300℃范围内发生氧化还原作用导致乙烷和丙烷瑞利分馏等。详细研究对比后发现不论页岩气或者煤成气,次生型负碳同位素系列仅出现在过成熟页岩或源岩区,在成熟和高成熟页岩或者源岩区未见次生型负碳同位素系列,由此得出过成熟或者高温(>200℃)是次生型负碳同位素系列的主要控制因素,在此主控因素下可由二次裂解、扩散或者乙烷和丙烷瑞利分馏的一种或几种方式促使次生型负碳同位素系列的形成。

关键词: 碳同位素系列, 次生型负碳同位素系列, 页岩气, 煤成气, 成因

Abstract:

The carbon isotopic series of alkane gases could be divided into three types:(1)positive carbon isotopic series:δ13C values increase with increasing carbon numbers among the C1-C4 alkanes,which is a typical characteristic for primary alkane gases;(2)negative carbon isotopic series:δ13C values decrease with increasing carbon numbers among the C1-C4 alkanes;(3)partial carbon isotopic reversal,which has no increasing or decreasing relationship between the δ13C values and carbon numbers.Negative carbon isotopic series could be further subdivided into primary and secondary origins.The former is a typical characteristic of abiogenic gases while the later is resulted from the secondary alteration imposed on biogenic gases,which is commonly observed in over-mature shale gas or coal-derived gas.Previous works have proposed several possible explanations for negative carbon isotopic series of secondary origins such as secondary cracking,diffusion,the Rayleigh fractionation of ethane and propane through redox reaction with the participation of transition metal and water at 250-300℃.After a comparative study,the authors found that negative carbon isotopic series of secondary origin for both shale gas and coal-derived gas appeared in the area where source rocks(shales)are at over-mature stage while it was not observed in the area where source rocks(shales)are only at mature-high mature stage.As a result,extremely high maturity(>200℃)is the main controlling factor for negative carbon isotopic series of secondary origin.Within this maturity interval,secondary cracking,diffusion and Rayleigh fractionation of ethane and propane could happen separately or together.

Key words: Carbon isotopic series, Carbon isotopic series of secondary origin, Shale gas, Coal-derived gas, rigin

中图分类号: 

  • TE122.1

[1]Dai Jinxing,Xia Xinyu,Qin Shengfei,et al.Causation of partly reversed orders of δ13C in biogenic alkane gas in China[J].Oil & Gas Geology,2003,24(1):1-6.[戴金星,夏新宇,秦胜飞,等.中国有机烷烃气碳同位素系列倒转的成因[J].石油与天然气地质,2003,24(1):1-6.]
[2]Dai J,Xia X,Qin S,et al.Origins of partially reversed alkane δ13C values for biogenic gases in China[J].Organic Geochemistry,2004,35(4):405-411.
[3]Zorikin L M,Starobinets I S,Stadnik E V.Natural Gas Geochemistry of Oil-gas Bearing Basin[M].Moscow:Mineral Press,1984.
[4]MaraisD J D,Donchin J H,Nehring N L,et al.Molecular carbon isotopic evidence for the origin of geothermal hydrocarbons[J].Nature,1981,292(5826):826-828.
[5]Hosgrmez H.Origin of the natural gas seep of Cirali(Chimera),Turkey:Site of the first Olympic fire[J].Journal of Asian Earth Sciences,2007,30(1):131-141.
[6]Proskurowski G,Lilley M D,Seewald J S,et al.Abiogenic hydrocarbon production at Lost City Hydrothermal Field[J].Science,2008,319(5863):604-607.
[7]Yuen G,Blair N,Marais D J D,et al.Carbon isotope composition of low molecular weight hydrocarbons and monocarboxylic acids from Murchison meteorite[J].Nature,1984,307(5948):252-254.
[8]Liu Ruobing.Typical features of the first giant shale gasfield in China[J].Natural Gas Geoscience,2015,26(8):1488-1498.[刘若冰.中国首个大型页岩气田典型特征[J].天然气地球科学,2015,26(8):1488-1498.]
[9]Dai J,Zou C,Liao S,et al.Geochemistry of the extremely high thermal maturity Longmaxi shale gas,southern Sichuan Basin[J].Organic Geochemistry,2014,74:3-12.
[10]Zumberge J,Ferworn K,Brown S.Isotopic reversal(‘rollover’)in shale gases produced from the Mississippian Barnett and Fayetteville formations[J].Marine & Petroleum Geology,2012,31(1):43-52.
[11][KG*4/5]Tilley B,Muehlenbachs K.Isotope reversals and universal stages and trends of gas maturation in sealed,self-contained petroleum systems[J].Chemical Geology,2013,339(339):194-204.
[12]Guo T,Zeng P.The structural and preservation conditions for shale gas enrichment and high productivity in the Wufeng-Longmaxi Formation,Southeastern Sichuan Basin[J].Energy Exploration & Exploitation,2015,33(3):259-276.
[13]Zhang Xiaoming,Shi Wanzhong,Xu Qinghai,et al.Reservoir 〖JP2〗characteristics and controlling factors of shale gas in Jiaoshiba area,Sichuan Basin[J].Acta Petrolei Sinica,2015,36(8):926-939.[张晓明,石万忠,徐清海,等.四川盆地焦石坝地区页岩气储层特征及控制因素[J].石油学报,2015,36(8):926-939.]〖JP〗
[14]Dai Jinxing,Zou Caineng,Li Wei,et al.Large Coal-formed Gas Field and Sources in China[M].Beijing:Science Press,2014:28-91.[戴金星,邹才能,李伟,等.中国煤成大气田及气源[M].北京:科学出版社,2014:28-91.]
[15]Rodriguez N D,Philp R P.Geochemical characterization of gases from the Mississippian Barnett Shale,Fort Worth Basin,Texas[J].AAPG Bulletin,2010,94(11):1641-1656.
[16]Jenden P D,Drazan D J,Kaplan I R.Mixing of thermogenic natural gases in northern Appalachian Basin[J].AAPG Bulletin,1993,77(6):980-998.
[17]Xia X,Chen J,Braun R,et al.Isotopic reversals with respect to maturity trends due to mixing of primary and secondary products in source rocks[J].Chemical Geology,2013,339(2):205-212.
[18]Burruss R C,Laughrey C D.Carbon and hydrogen isotopic reversals in deep basin gas:Evidence of limits to the stability of hydrocarbons[J].Organic Geochemistry,2009,41(12):1285-1296.
[19]Li Mingcheng.Petroleum Migration[M].4th edition.Beijing:Petroleum Industry Press,2013:93-94.[李明诚.石油与天然气运移[M].第四版.北京:石油工业出版社,2013:93-94.]
[20]Vinogradov A P,Galimor E M.Isotopism of carbon and the problem of oil origin[J].Geochemistry,1970,3:275-296.

[1] 赵文韬,荆铁亚,吴斌,周游,熊鑫. 断裂对页岩气保存条件的影响机制——以渝东南地区五峰组—龙马溪组为例[J]. 天然气地球科学, 2018, 29(9): 1333-1344.
[2] 夏鹏,王甘露,曾凡桂,牟雨亮,张昊天,刘杰刚. 黔北地区牛蹄塘组高—过成熟页岩气富氮特征及机理探讨[J]. 天然气地球科学, 2018, 29(9): 1345-1355.
[3] 康毅力,豆联栋,游利军,陈强,程秋洋. 富有机质页岩增产改造氧化液浸泡离子溶出行为[J]. 天然气地球科学, 2018, 29(7): 990-996.
[4] 曾凡辉,王小魏,郭建春,郑继刚,李亚州,向建华. 基于连续拟稳定法的页岩气体积压裂水平井产量计算[J]. 天然气地球科学, 2018, 29(7): 1051-1059.
[5] 朱维耀, 马东旭. 页岩储层有效应力特征及其对产能的影响[J]. 天然气地球科学, 2018, 29(6): 845-852.
[6] 余川,曾春林,周洵,聂海宽,余忠樯. 大巴山冲断带下寒武统页岩气构造保存单元划分及分区评价[J]. 天然气地球科学, 2018, 29(6): 853-865.
[7] 邱 振,邹才能,李熙喆,王红岩,董大忠,卢斌,周尚文,施振生,冯子齐,张梦琪. 论笔石对页岩气源储的贡献——以华南地区五峰组—龙马溪组笔石页岩为例[J]. 天然气地球科学, 2018, 29(5): 606-615.
[8] 汪道兵,葛洪魁,宇波,文东升,周珺,韩东旭,刘露. 页岩弹性模量非均质性对地应力及其损伤的影响[J]. 天然气地球科学, 2018, 29(5): 632-643.
[9] 龙胜祥,冯动军,李凤霞,杜伟. 四川盆地南部深层海相页岩气勘探开发前景[J]. 天然气地球科学, 2018, 29(4): 443-451.
[10] 贺领兄,宋维刚,安生婷,徐永锋,沈娟,路超,王军. 青海东昆仑地区八宝山盆地烃源岩有机地球化学特征与页岩气勘探前景[J]. 天然气地球科学, 2018, 29(4): 538-549.
[11] 邢 舟,曹高社,毕景豪,周新桂,张交东. 南华北盆地禹州地区ZK0606钻孔上古生界煤系烃源岩评价[J]. 天然气地球科学, 2018, 29(4): 518-528.
[12] 王秀平,牟传龙,肖朝晖,郑斌嵩,陈尧,王启宇,刘惟庆. 湖北鹤峰地区二叠系大隆组黑色岩系特征及成因初探[J]. 天然气地球科学, 2018, 29(3): 382-396.
[13] 卢文涛,李继庆,郑爱维,梁榜,张谦,杨文新. 涪陵页岩气田定产生产分段压裂水平井井底流压预测方法[J]. 天然气地球科学, 2018, 29(3): 437-442.
[14] 张云钊,曾联波,罗群,张晨,吴浩,吕文雅,代全齐,朱德宇. 准噶尔盆地吉木萨尔凹陷芦草沟组致密储层裂缝特征和成因机制[J]. 天然气地球科学, 2018, 29(2): 211-225.
[15] 高文杰,李贤庆,张光武,魏强,张吉振,祁帅,陈金明. 塔里木盆地库车坳陷克拉苏构造带深层致密砂岩气藏储层致密化与成藏关系[J]. 天然气地球科学, 2018, 29(2): 226-235.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 吴小奇, 廖凤蓉, 黄士鹏. 塔里木盆地煤成气勘探潜力分析[J]. 天然气地球科学, 2011, 22(6): 975 -981 .
[2] 杜永林, 张玉清, . 谈谈加快我国天然气工业发展的有关问题[J]. 天然气地球科学, 1990, 1(1): 23 -24 .
[3] 李凤杰,李磊,林洪,杨豫川,方朝刚,孟立娜. 鄂尔多斯盆地吴起地区侏罗系侵蚀古河油藏分布特征及控制因素[J]. 天然气地球科学, 2013, 24(6): 1109 -1117 .
[4] 朱光有,陈斐然,陈志勇,张颖,邢翔,陶小晚,马德波. 塔里木盆地寒武系玉尔吐斯组优质烃源岩的发现及其基本特征[J]. 天然气地球科学, 2016, 27(1): 8 -21 .
[5] 崔海峰,田雷,张年春,刘军. 塔西南坳陷麦盖提斜坡奥陶系油气成藏特征[J]. 天然气地球科学, 2016, 27(1): 22 -29 .
[6] 吴萧,韩杰,朱永峰,刘俊锋. 塔里木盆地轮古东油气相态和饱和度特征及其主控因素分析[J]. 天然气地球科学, 2016, 27(1): 30 -40 .
[7] . 《天然气地球科学》2016-1期封面及目次[J]. 天然气地球科学, 2016, 27(1): 0 -1 .
[8] 魏国齐,张福东,李君,杨慎,黄朝勇,佘源琦,鞠秀娟,赵丽华. 中国致密砂岩气成藏理论进展[J]. 天然气地球科学, 2016, 27(2): 199 -210 .
[9] 付广,张博为,历娜,王浩然. 沿断裂运移油气向两侧砂体发生侧向分流的判识方法[J]. 天然气地球科学, 2016, 27(2): 211 -219 .
[10] 谢玉洪,范彩伟,周家雄,张迎朝,谭建财,任科英. 琼东南盆地中中新世重力流海底扇沉积特征及控制因素[J]. 天然气地球科学, 2016, 27(2): 220 -228 .