天然气地球科学

• 非常规天然气 • 上一篇    下一篇

考虑解吸扩散的页岩气藏气水两相压裂数值模拟

赵金洲,周莲莲,马建军,李勇明   

  1. 1.西南石油大学油气藏地质及开发工程国家重点实验室,四川 成都 610500;
    2.玉门油田公司酒东作业区,甘肃 酒泉 735000
  • 收稿日期:2014-09-25 修回日期:2014-12-23 出版日期:2015-09-10 发布日期:2015-09-10
  • 作者简介:赵金洲(1962-),男,湖北仙桃人,教授,博士生导师,主要从事油气藏压裂酸化改造理论与应用技术研究. E-mail:zhaojz@swpu.edu.cn.
  • 基金资助:

    中国石油科技创新基金(编号:2011D-5006-0201);国家重点基础研究发展计划(编号:2013CB228004);新世纪优秀人才支持计划(编号:NCET-11-1062)联合资助.

Numerical Simulation of Fracturing Wells Considering Desorption and Diffusion Effect for Shale Gas with Gas-Water Two Phases

ZHAO Jin-zhou,ZHOU Lian-lian,MA Jian-jun,LI Yong-ming   

  1. 1.Southwest Petroleum University,Chendu 610500,China;
    2.Jiudong Operortion Area,Yumen Oilfield Company,Jiuquan 735000,China
  • Received:2014-09-25 Revised:2014-12-23 Online:2015-09-10 Published:2015-09-10

摘要:

水力压裂是实现页岩储层有效开发的重要技术手段,而准确预测页岩气藏压裂井产量是保证页岩气高效开发的基础。以油气藏数值模拟和数值计算方法为工具,在考虑页岩基质块解吸扩散和窜流条件下,建立了页岩气藏气水两相压裂渗流数学模型,推导了数值计算模型,并研制了页岩气藏压裂产能模拟器,定量分析了裂缝参数、物性参数和解吸扩散参数对页岩气压裂井产量的影响。研究表明:水力压裂能有效提高单井产量,是页岩气藏高效开发的有效措施;压裂裂缝导流能力和天然裂缝渗透率是页岩气开采的主控因素,日产气量和日产水量随压裂裂缝导流能力和天然裂缝渗透率增加而增加;基质渗透率和扩散系数对产量的影响相对较小。

关键词: 页岩气, 压裂, 两相, 解吸扩散, 数学模型, 数值模拟, 产量

Abstract:

Hydraulic fracturing is an essential technology to stimulate shale reservoirs,and accurate prediction of fractured shale gas well productivity is the basic for the efficient development of shale gas reservoir.This paper establishes a gas-water two-phase percolation mathematical model under the condition of desorption and diffusion by means of numerical simulation and calculation method.And the numerical model is given in this paper.By means of the simulator for post-fracturing performance of the shale gas reservoir is developed,and quantitative analysis of the influence of fracture parameters,physical parameters and desorption diffusion parameters to fractured shale gas well production is investigated.The research results show that hydraulic fracturing improves single well production,and it′s an effective measure to develop shale gas.Therefore the induced hydraulic fracture conductivity and natural fracture permeability are the main influence factors on shale gas production,and the higher the induced fracture conductivity and natural fracture permeability,the higher the gas and water production rate.Relatively speaking,the matrix permeability and diffusion coefficients have less effect on production.

Key words: Shale gas, Hydraulic fracturing, Two phase, Desorption and diffusion, Mathematical model, Numerical simulation, Production

中图分类号: 

  • TE357.1

[1]Li Jianzhong,Dong Dazhong,Chen Gengsheng,et al.Prospects and strategic position of shale gas resources in China[J].Natural Gas Industry,2009,29(5):11-16.[李建忠,董大忠,陈更生,等.中国页岩气资源前景与战略地位[J].天然气工业,2009,29(5):11-16.]
[2][ZK(]Qian Bozhang,Zhu Jianfang.Shale gas development:Today and tomorrow[J].Natural Gas Technology,2010,4(2):11-13.[钱伯章,朱建芳.页岩气开发的现状和前景[J].天然气技术,2010,4(2):11-13.]
[3][JP2]Qiu Zhen,Zou Caineng,Li Jianzhong,et al.Unconventional petroleum resources assessment:Progress and future prospects[J].Natural Gas Geoscience,2013,24(2):238-246.[邱振,邹才能,李建忠,等.非常规油气资源评价进展与未来展望[J].天然气地球科学,2013,24(2):238-246.]
[4]Wang Xiang,Liu Yuhua,Zhang Min,et al.Conditions offormation and accumulation for shale gas[J].Natural Gas Geoscience,2010,21(2):350-356.[王祥,刘玉华,张敏,等.页岩气形成条件及成藏影响因素研究[J].天然气地球科学,2010,21(2):350-356]
[5]Wang Weifeng,Liu Peng,Chen Chen,et al.The study of shale gas reservoir theory and resources evaluation[J].Natural Gas Geoscience,2013,24(3):429-438.[王伟锋,刘鹏,陈晨,等.页岩气成藏理论及资源评价方法[J].天然气地球科学,2013,24(3):429-438.]
[6]Mcdanlel B W,Surjaatmdja J B,Sutherland R J,et al.Evolving New Stimulation Process Proves Highly Effective in Level 1 Dual-Lateral Completion[R].SPE Eastern Regional Meeting held in Lexington,Kentucky,October 23-26 2006.SPE 78697,2006.
[7][JP2]Schein G W,Weiss S.Simultaneous fracturing takes off:Enormous multiwall fracs maximize exposure to shale reservoirs,achieving more production sooner[J].Hart′s E & P,2008,81(3):55-56.
[8]Maxwell S C,Waltman C K,Warpinski N R,et al.Imaging Seismic Deformation Induced by Hydraulic Fracture Complexity[R].SPE Annual Technical Conference and Exhibition held in San Antonio,Texas,September 24-27 2006.SPE 102801,2006.
[9][JP2]Duan Yonggang,Li Jianqiu.Transient pressure analysis of infinite conductivity fractured wells for shale gas[J].Natural Gas Industry,2010,30(3):26-29.[段永刚,李建秋.页岩气无限导流压裂井压力动态分析[J].天然气工业,2010,30(3):26-29.]
[10]Li Yongming,Yao Fengsheng,Zhao Jinzhou,et al.Shale gas reservoir nanometer-pore microscopic seepage dynamic research[J].Science Technology and Engineering,2013,13(10):2657-2661.[李勇明,姚锋盛,赵金洲,等.页岩气藏纳米孔隙微观渗流动态研究[J].科学技术与工程,2013,13(10):2657-2661.]
[11]Du Dianfa,Wang Yanyan,Zhang Qiong,et al.A comprehensive seepage model of shale gas reservoir and pressure behavior analysis[J].Natural Gas Geoscience,2014,25(4):612-617.[杜殿发,王妍妍,张琼,等.页岩气藏综合渗流模型及压力动态分析[J].天然气地球科学,2014,25(4):612-617.]
[12]Guo Xiao,Wang Weifeng.Seepage mechanism and transient pressure analysis of shale gas[J].Jaournal of Applied Mathematics,2013,4(1):197-203.
[13]Zhou Yulong,Zhang Liehui,Zhao Jinzhou.“Triple porosity” model of transient well test and rate decline analysis for multi-fractured horizontal well in shale gas reservoirs[J].Journal of Petroleum Science and Engineering,2013,110:253-262.
[14]OzkanE,Raghavan R.Modeling of Fluid Transfer From Shale Matrix to Fracture Network[R].SPE Annual Technical Conference and Exhibition,19-22 September,Florence,Italy.SPE 134830,2010.
[15]Han Dakuang,Chen Qinlei,Yan Cunzhang.The Basis for Reservoir Numerical Simulation[M].Beijing:Petroleum Industry Press,1999.[韩大匡,陈钦雷,闫存章.油藏数值模拟基础[M].北京:石油工业出版社,1999.]

[1] 赵文韬,荆铁亚,吴斌,周游,熊鑫. 断裂对页岩气保存条件的影响机制——以渝东南地区五峰组—龙马溪组为例[J]. 天然气地球科学, 2018, 29(9): 1333-1344.
[2] 夏鹏,王甘露,曾凡桂,牟雨亮,张昊天,刘杰刚. 黔北地区牛蹄塘组高—过成熟页岩气富氮特征及机理探讨[J]. 天然气地球科学, 2018, 29(9): 1345-1355.
[3] 黄雨,李晓平,谭晓华. 三重介质复合气藏水平井不稳定产量递减动态分析[J]. 天然气地球科学, 2018, 29(8): 1190-1197.
[4] 康毅力,豆联栋,游利军,陈强,程秋洋. 富有机质页岩增产改造氧化液浸泡离子溶出行为[J]. 天然气地球科学, 2018, 29(7): 990-996.
[5] 曾凡辉,王小魏,郭建春,郑继刚,李亚州,向建华. 基于连续拟稳定法的页岩气体积压裂水平井产量计算[J]. 天然气地球科学, 2018, 29(7): 1051-1059.
[6] 朱维耀,马东旭. 页岩储层有效应力特征及其对产能的影响[J]. 天然气地球科学, 2018, 29(6): 845-852.
[7] 余川,曾春林,周洵,聂海宽,余忠樯. 大巴山冲断带下寒武统页岩气构造保存单元划分及分区评价[J]. 天然气地球科学, 2018, 29(6): 853-865.
[8] 吕志凯,贾爱林,唐海发,刘群明,王泽龙. 大型致密砂岩气藏水平井产能评价与新认识[J]. 天然气地球科学, 2018, 29(6): 873-879.
[9] 邱 振,邹才能,李熙喆,王红岩,董大忠,卢斌,周尚文,施振生,冯子齐,张梦琪. 论笔石对页岩气源储的贡献——以华南地区五峰组—龙马溪组笔石页岩为例[J]. 天然气地球科学, 2018, 29(5): 606-615.
[10] 汪道兵,葛洪魁,宇波,文东升,周珺,韩东旭,刘露. 页岩弹性模量非均质性对地应力及其损伤的影响[J]. 天然气地球科学, 2018, 29(5): 632-643.
[11] 龙胜祥,冯动军,李凤霞,杜伟. 四川盆地南部深层海相页岩气勘探开发前景[J]. 天然气地球科学, 2018, 29(4): 443-451.
[12] 贺领兄,宋维刚,安生婷,徐永锋,沈娟,路超,王军. 青海东昆仑地区八宝山盆地烃源岩有机地球化学特征与页岩气勘探前景[J]. 天然气地球科学, 2018, 29(4): 538-549.
[13] 邢 舟,曹高社,毕景豪,周新桂,张交东. 南华北盆地禹州地区ZK0606钻孔上古生界煤系烃源岩评价[J]. 天然气地球科学, 2018, 29(4): 518-528.
[14] 史文洋,姚约东,程时清,石志良,高敏. 裂缝性低渗透碳酸盐岩储层酸压改造油井动态压力特征[J]. 天然气地球科学, 2018, 29(4): 586-596.
[15] 卢文涛,李继庆,郑爱维,梁榜,张谦,杨文新. 涪陵页岩气田定产生产分段压裂水平井井底流压预测方法[J]. 天然气地球科学, 2018, 29(3): 437-442.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!