天然气地球科学

• 天然气地质学 • 上一篇    下一篇

超深层致密砂岩储层裂缝定量评价及预测研究——以塔里木盆地克深气田为例

王俊鹏,张荣虎,赵继龙,王珂,王波,曾庆鲁,刘春   

  1. 中国石油杭州地质研究院, 浙江 杭州 310023
  • 收稿日期:2014-02-14 修回日期:2014-04-19 出版日期:2014-11-10 发布日期:2014-11-10
  • 作者简介:王俊鹏(1983-),男,河北石家庄人,工程师,硕士,主要从事储层地质及裂缝预测研究.E-mail:wangjp_hz@petrochina.com.cn.
  • 基金资助:
    国家科技重大专项“高压气藏安全高效开发技术”(编号:2011ZX05015-002);“前陆冲断带异常高压气藏高效开发技术”(编号:2011ZX05046-003)|中央高校基本科研业务费专项资金(编号:12CX06004A)联合资助.

Characteristics and Evaluation of Fractures in Ultra-deep Tight Sandstone Reservoir:Taking Keshen Gasfield in Tarim Basin,NW China as an Example

WANG Jun-peng,ZHANG Rong-hu,ZHAO Ji-long,WANG Ke,WANG Bo,ZENG Qing-lu,LIU Chun   

  1. Hangzhou Institute of Geology,Research Institute of Exploration and Development,PetroChina,Hangzhou 310023,China
  • Received:2014-02-14 Revised:2014-04-19 Online:2014-11-10 Published:2014-11-10

摘要: 塔里木盆地库车坳陷克深气田区白垩系巴什基奇克组是库车山前的主力产气层段,具有埋深大、基质物性差、构造裂缝整体发育的特征。利用钻井取心、FMI成像、钻完井漏失量、试采压力恢复资料,结合CT扫描定量分析、高压压汞、扫描电镜、裂缝充填物测年等实验分析方法,开展了低地震资料品质下的超深层致密砂岩储层裂缝的定量评价与预测。认为克深气田区总体发育3期构造裂缝,以高角度半充填剪切缝为主,有效开启度为50~300μm,主要走向以近SN向为主,见EW走向裂缝|主要受古应力的大小及方向控制,同时受地层原始岩性组构影响|第三期构造裂缝与储层演化配置关系最好,对储层渗透率的提升起到关键作用。裂缝的高渗流区主要分布在背斜高部位、断裂的转折端及次级断裂附近。构造裂缝有效沟通了单砂体,可整体提高储层渗透率1~3个数量级,构造裂缝派生的微裂缝可有效沟通其周围的基质孔喉,沿裂缝网络更易发育次生溶蚀孔隙。

关键词: 致密砂岩, 储层, 裂缝评价, 深层, 塔里木盆地

Abstract: The Cretaceous Bashijiqike Formation of Keshen Gasfield in Kuqa Depression of Tarim Basin,main gas producing zone,is fracture-type reservoir.The burial depth of sandstone reservoir was over 6 000m.Characteristics and evaluation of fractures of ultra-deep tight sandstone reservoir were constructed by core description,FMI,drilling leakage,build-up of pressure during producing test and CT scanning,high-pressure mercury intrusion method,SEM,isotopic dating of fracture stuff.There are 3 evolution stages of fractures,which demi-hydraulic filled,high angle,effective opening at 50-300μm,heading for N-S orientation mainly,some in W-E orientation in Keshen Gasfield.The fractures development affected by composition of formation is controlled by palaeo-stress.The third stage fractures can improve reservoir permeability effectively.High position of anticline,transition of faults and secondary faults are the areas with high fracture permeability.Fractures can connect the single sand body effectively,and improve reservoir permeability at 1-3folds.The micro-fracture can connect pore and throat of reservoir around main fracture,making secondary corrosion pore easily.

Key words: Tight sandstone, Reservoir, Fracture evaluation, Ultra-deep, Tarim Basin

中图分类号: 

  • TE122.2
[1]Niu Jiayu,Wang Yuman,Jiao Hansheng.The analyses of petroleum exploration potential of the old oilfield in east China[J].China Petroleun Exploration,2004,9(1):33-40.[牛嘉玉,王玉满,潐汉生.中国东部老油田区深层油气勘探潜力分析[J].中国石油勘探,2004,9(1):33-40.]
[2]Li Wuguang,Yang Shenglai,Sun Xiaoxu,et al.Study of change in length wise of sandstone reservoir of Ultra-deep oil-gas reservoir[J].Special Oil-Gas Reservoir,2011,18(5):83-85.[李武广,杨胜来,孙晓旭,等.超深油气藏储层岩孔隙度垂向变化研究[J].特种油气藏,2011,18(5):83-85.]
[3]Nelson R A .Geologic Analysis of Naturally Fractured Reservoirs[M].Houston,Texas:Gulf Publishing Company,1985.
[4]Tong Hengmao.Application of synthetic approach for predicting reservoir fractures in GBEIBE Oilfield[J].China Petroleum Exploration,2007,(3):77-80.[童亨茂.储层裂缝综合预测方法在GBEIBE油田的应用[J].中国石油勘探,2007,(3):77-80.]
[5]Narr W,Suppe J.Joint spacing in sedimentary rocks[J].Journal Structure Geology,1991,13(9):1037-1048.
[6]Deng Hucheng,Zhou Wen,Zhou Qiumei,et al.Quantification characterization of the valid natural fractures in the 2nd Xu Member,Xinchang Gasfield[J].Acta Petrologica Sinica,2013,29(3):1087-1097.[邓虎成,周文,周秋媚,等.新场气田须二气藏天然裂缝有效性定量表征方法及应用[J].岩石学报,2013,29(3):1087-1097.]
[7]Wang Pengwei,Chen Xiao,Pang Xiongqi,et al.The controlling of structure fractures on the accumulation of tight sand gas reservoirs[J].Natural Gas Geoscience,2014,25(2):185-191.[王鹏威,陈筱,庞雄奇,等.构造裂缝对致密砂岩气成藏过程的控制作用[J].天然气地球科学,2014,25(2):185-191.]
[8]Yan Danping,Zhou Meifu,Tian Chonglu,et al.A photoelastie experiment for fracture extending in fractured rocks:An example from the Shahejie Formation in the southern north China Basin[J].Acta Geologica Sinica,2005,79(5):602-607.[颜丹平,周美夫,田崇鲁,等.裂缝性岩石裂缝扩展的光弹构造物理模拟[J].地质学报,2005,79(5):602-607.]
[9]Yang Jian,Kang Yili,Wang Yezhong,et al.An experimental study of gas mass-transfer for fractured tight sand gas reservoirs[J].Natural Gas Industry,2010,30(10):39-41.[杨建,康毅力,王业众,等.裂缝性致密砂岩储层气体传质实验[J].天然气工业,2010,30(10):39-41.]
[10]Li Shanjun.Inverting fracture porosity and dip of limestone fractured reservoir using 3-D FEM[J].Well Logging Technology,1998,22(6):412-415.[李善军.用三维有限元素法反演单一灰岩裂缝性储层的裂缝孔隙度和裂缝倾角[J].测井技术,1998,22(6):412-415.]
[11]Lu Yingzhong,Huang Zhihui,Guan Zhining,et al.Summary of the methods of well logging interpretation on the fracture features of reservoirs[J].Geological Science and Technology Information,1998,17(1):85-90.[卢颖忠,黄智辉,管志宁,等.储层裂缝特征测井解释方法综述[J].地质科技情报,1998,17(1):85-90.]
[12]Yin Zhijun,Huang Xiuwang,Chen Chonghe.Fracture determination by means of 3-dimensional seismic data[J].Petroleum Exploration and Development,1999,26(1):78-80.[尹志军,黄述旺,陈崇河.用三维地震资料预测裂缝[J].石油勘探与开发,1999,26(1):78-80.]
[13]Zhou Cancan,Yang Chunding.Contributing factor of sandstone fracture and its integrated identifying technology for regular logging data[J].Oil Geophysical Prospecting,2003,38(4):425-430.[周灿灿,杨春顶.砂岩裂缝的成因及其常规测井资料综合识别技术研究[J].石油地球物理勘探,2003,38(4):425-430.]
[14]Aguilera R.Naturally Fractured Reservoirs[M].2nd edition.Tulsa,Oklahoma:Penn Well Publishing Company,1995:211-268.
[15]Wang Bifeng,Dai Junsheng,Cheng Ronghong,et al.Present ground stress in Dina Gas Field[J].Xinjiang Petroleum Geology,2007,28(4):471-472.[汪必峰,戴俊生,成荣红,等.迪那气田现今地应力研究[J].新疆石油地质,2007,28(4):471-472.]
[16]Dai Junsheng,Wang Bifeng,Ma Zhanrong.Research on cracking principles of brittle low-permeability sands[J].Xinjiang Petroleum Geology,2007,28(4):393-395.[戴俊生,汪必峰,马占荣.脆性低渗透砂岩破裂准则研究[J].新疆石油地质,2007,28(4):393-395.]
[17]Zeng lianbo.Formation and Distribution of Fractures in Low-permeability Sands Reservoir[M].Beijing:Science Press,2008.[曾联波.低渗透砂岩储层裂缝的形成与分布[M].北京:科学出版社,2008.]
[18]Van Golf-Racht T D.Fundamentals of Fractured Reservoir Engineering:Amsterdam[M].Elsevier,1982.
[19]Willianm R,Jamison.Quantitative evaluation of fractures on Monksbood anticline,a detachment fold in the footballs of western Canada[J].AAPG Bulletin,1997,81(7):1110-1132.
[20]Shang Lin,Dai Junsheng,Jia Kaifu,et al.Numerical simulation for the distribution of different levels oftectonic fractures in carbonate buried hills:Taking Futai Oilfield in Bohai Bay Basin as an example[J].Natural Gas Geoscience,2013,24(6):1260-1267.[商琳,戴俊生,贾开富,等.碳酸盐岩潜山不同级别构造裂缝分布规律数值模拟——以渤海湾盆地富台油田为例[J].天然气地球科学,2013,24(6):1260-1267.]
[21]Zou Huayao,Zhao Chunming,Yin Zhijun,et al.Fracture-occurring outcrop model in Neoarchean crystalline rock-buried hill,Bohai Bay Basin,north China[J].Natural Gas Geoscience,2013,24(5):879-885.[邹华耀,赵春明,尹志军,等.渤海湾盆地新太古代结晶岩潜山裂缝发育的露头模型[J].天然气地球科学,2013,24(5):879-885.]
[22]Zhang Zhaohui,Gao Chuqiao,Gao Yongde.A study of the controlling factor on the resistivity of fractured reservoir using the numerical simulation[J].Natural Gas Geoscience,2014,25(2):252-258.[张兆辉,高楚桥,高永德.用数值模拟法开展裂缝型储层电阻率控制因素研究[J].天然气地球科学,2014,25(2):252-258.]
[23]Wang Bifeng,Dai Junsheng,Sheng Xuexiang,et al.Reservoir fracture forecast of mid-Shasan member in Niu 35 fault block[J].Journal of China University of Petroleum,2009,33(3):18-22.[汪必峰,戴俊生,盛学香,等.牛35断块沙三中储层裂缝预测[J].中国石油大学学报:自然科学版,2009,33(3):18-22.]
[24]Feng Jianwei,Dai Junsheng,Ma Zhanrong,et al.The theoretical model between fracture parameters and stress field of low-permeability sandstones[J].Acta Petrolei Sinica,2011,32(4):664-671.[冯建伟,戴俊生,马占荣,等.低渗透砂岩裂缝参数与应力场关系理论模型[J].石油学报,2011,32(4):664-671.]
[25]Zeng Lianbo,Tan Chengxuan,Zhang Mingli.Tectonic stress field and its effect on hydrocarbon migration and accumulation in Mesozoic and Cenozoic in Kuqa Depression,Tarim Basin[J].Science in China:Series D,2004,34(supplementⅠ):98-106.[曾联波,谭成轩,张明利.塔里木盆地库车坳陷中新生代构造应力场及其油气运聚效应[J].中国科学:D 辑,2004,34(增刊Ⅰ):98-106.]
[26]Zhang Zhongpei,Wang Qingchen.Development of joints an shear fractures in Kuqa Depression and its implication to regional stress field switching[J].Science in China:Series D,2004,34(supplementⅠ):63-73.[张仲培,王清晨.库车坳陷节理和剪切破裂发育特征及其对区域应力场转换的指示[J].中国科学:D 辑,2004,34(增刊Ⅰ):63-73.]
[27]Zeng Lianbo,Qi Jiafu,Wang Chenggang,et al.The influence of tectonic stress on fracture formation and fluid flow[J].Earth Science Frontiers,2008,15(3):292-298.[曾联波,漆家福,王成刚,等.构造应力对裂缝形成与流体流动的影响[J].地学前缘,2008,15(3):292-298.]
[28]Zhang Mingli,Tan Chengxuan,Tang Liangjie,et al.An analysis of the Mesozoic-Cenozoic tectonic stress field in Kuqa Depression,Tarim Basin[J].Acta Geoscientica Sinica,2004,25(6):615-619.[张明利,谭成轩,汤良杰,等.塔里木盆地库车坳陷中新生代构造应力场分析[J].地球学报,2004,25(6):615-619.]
 
[1] 吴因业, 吕佳蕾, 方向, 杨智, 王岚, 马达德, 陶士振. 湖相碳酸盐岩—混积岩储层有利相带分析——以柴达木盆地古近系为例[J]. 天然气地球科学, 2019, 30(8): 1150-1157.
[2] 陈旋, 刘小琦, 王雪纯, 马强, 刘俊田, 龚鑫, 杨小东, 石江峰, 白国娟. 三塘湖盆地芦草沟组页岩油储层形成机理及分布特征[J]. 天然气地球科学, 2019, 30(8): 1180-1189.
[3] 吴松涛, 林士尧, 晁代君, 翟秀芬, 王晓瑞, 黄秀, 徐加乐. 基于孔隙结构控制的致密砂岩可动流体评价——以鄂尔多斯盆地华庆地区上三叠统长6致密砂岩为例[J]. 天然气地球科学, 2019, 30(8): 1222-1232.
[4] 尤源, 梁晓伟, 冯胜斌, 牛小兵, 淡卫东, 李卫成, 王芳, . 鄂尔多斯盆地长7段致密储层主要黏土矿物特征及其地质意义[J]. 天然气地球科学, 2019, 30(8): 1233-1241.
[5] 沈骋, 赵金洲, 任岚, 范宇. 四川盆地龙马溪组页岩气缝网压裂改造甜点识别新方法[J]. 天然气地球科学, 2019, 30(7): 937-945.
[6] 张晗. 四川盆地龙马溪组页岩储层缝网导流能力优化[J]. 天然气地球科学, 2019, 30(7): 955-962.
[7] 赵正望, 唐大海, 王小娟, 陈双玲. 致密砂岩气藏天然气富集高产主控因素探讨——以四川盆地须家河组为例[J]. 天然气地球科学, 2019, 30(7): 963-972.
[8] 王勇飞, 赵向原, 刘成川. 川东北元坝地区长兴组礁滩相储层裂缝特征及主控因素[J]. 天然气地球科学, 2019, 30(7): 973-981.
[9] 刘玲, 沃玉进, 孙炜, 陈霞, 徐美娥, 刘力辉. 龙门山前侏罗系沙溪庙组致密砂岩储层叠前地震预测[J]. 天然气地球科学, 2019, 30(7): 1072-1082.
[10] 戴金星, 洪峰, 倪云燕, 廖凤蓉. 塔里木盆地英吉苏凹陷煤成气前景良好[J]. 天然气地球科学, 2019, 30(6): 771-782.
[11] 李勇, 陈世加, 路俊刚, 肖正录, 何清波, 苏恺明, 李俊良. 近源间互式煤系致密砂岩气成藏主控因素——以川中地区须家河组天然气为例[J]. 天然气地球科学, 2019, 30(6): 798-808.
[12] 廖凤蓉, 洪峰. 世界巨型气田分布特征及其启示[J]. 天然气地球科学, 2019, 30(6): 860-865.
[13] 贾爱林, 唐海发, 韩永新, 吕志凯, 刘群明, 张永忠, 孙贺东, 黄伟岗, 王泽龙. 塔里木盆地库车坳陷深层大气田气水分布与开发对策[J]. 天然气地球科学, 2019, 30(6): 908-918.
[14] 位云生, 贾爱林, 郭智, 孟德伟, 王国亭. 致密砂岩气藏多段压裂水平井优化部署[J]. 天然气地球科学, 2019, 30(6): 919-924.
[15] 唐海忠, 魏军, 周在华, 肖文华, 俞海东, 魏浩元. 酒泉盆地营尔凹陷深层下沟组砂岩方解石胶结物特征[J]. 天然气地球科学, 2019, 30(5): 652-661.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 施立志;林铁锋;王震亮;王卓卓;姚勇;. 库车坳陷下白垩统天然气运聚系统与油气运移研究[J]. 天然气地球科学, 2006, 17(1): 78 -83 .
[2] 唐友军,文志刚,窦立荣,徐佑德. 一种估算原油成熟度的新方法[J]. 天然气地球科学, 2006, 17(2): 160 -162 .
[3] 朱志敏;沈冰;闫剑飞;. 阜新盆地无机成因气探讨[J]. 天然气地球科学, 2006, 17(3): 418 -421 .
[4] 张丽娟;李多丽;孙玉善;程明. 库车坳陷西部古近系-白垩系沉积储层特征分析[J]. 天然气地球科学, 2006, 17(3): 355 -360 .
[5] 曹刚. 川南北部石炭系储层分布及有利勘探区块[J]. 天然气地球科学, 2002, 13(1-2): 62 -66 .
[6] 贾成业;夏斌;王核;张胜利;. 东海陆架盆地丽水凹陷构造演化及油气地质分析[J]. 天然气地球科学, 2006, 17(3): 397 -401 .
[7] 杨蕾;同登科;. 变形介质煤层气双渗流动压力分析[J]. 天然气地球科学, 2006, 17(3): 429 -433 .
[8] 袁剑英. 中国西北地区主要油气勘探领域勘探难题与技术对策[J]. 天然气地球科学, 2006, 17(5): 601 -605 .
[9] 李广之;胡斌;袁子艳;邓天龙;. 轻烃的吸附与解吸模型[J]. 天然气地球科学, 2006, 17(4): 552 -558 .
[10] (俄罗斯) эM加里莫夫,李红光(译). 生物圈碳同位素组成全球变化特点[J]. 天然气地球科学, 2002, 13(1-2): 1 -7 .