天然气地球科学 ›› 2008, Vol. 19 ›› Issue (4): 571–576.doi: 10.11764/j.issn.1672-1926.2008.04.571

• 天然气水合物 • 上一篇    下一篇

多孔介质中气体水合物分解方法及模型研究进展

杨新, 孙长宇, 王璐琨, 粟科华, 陈光进   

  1. (1.中国石油大学(北京)重质油国家重点实验室,北京 102249;
    2.中国石油天然气股份有限公司,北京 100011)
  • 出版日期:2008-04-20 发布日期:2008-04-20
  • 作者简介:第一作者 Email:zhanjing@lzb.ac.cn.
  • 基金资助:

    国家自然科学基金项目(编号:4047006);国家自然科学基础人才培养基金冰川冻土学特殊学科点(编号:J0630966)联合资助.

Progress of Gas Hydrates Dissociation Method and Modeling in Porous Media

 YANG  Xin, SUN  Chang-Yu, WANG  Lu-Kun, SU  Ke-Hua, CHEN  Guang-Jin   

  1. (1.State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China;2.PetroChina Company Limited, Chemicals and Marketing Company, Beijing 100011, China)
  • Online:2008-04-20 Published:2008-04-20

摘要:

为了开发利用天然气水合物资源,需要深入了解多孔介质中天然气水合物的分解规律。对国内外近几年有关多孔介质中气体水合物的分解方法如热激法、降压法、注化学剂法、二氧化碳置换法等进行了综述,指出了各种方法的优缺点,并总结了水合物分解模型的研究进展,同时提出了关于多孔介质中水合物分解研究方向的建议。

关键词: 水合物, 多孔介质, 分解, 方法, 模型

Abstract:

Natural gas hydrate is widely distributed in the permafrost and marine sediments all over the world. In order to exploit and utilize it, the mechanism of dissociation in porous media should be mastered. This article summarized the dissociation methods of the gas hydrate in porous media at present, such as thermal stimulation, depressurization, chemical injection and carbon dioxide replacement. The advantages and disadvantages of each have been discussed. It provides the research progress on the dissociation model of gas hydrate, and gives some suggestions on the development.

Key words: Hydrate, Porous media, Dissociation, Method, Model.

[1]David Riestenberg, Olivia West,Sangyong Lee,et al. Sediment surface effects on methane hydrate formation and dissociation [J]. Marine Geology, 2003, 198: 181-190.
[2]李登伟,张烈辉,郭了萍,等. 微波开采天然气水合物气藏技术[J]. 特种油气藏, 2005, 12(6): 1-3.
[3]Kamath V A, Holder G D, Angert P F. Three phase interfacial heat transfer during the dissociation of propane hydrates [J]. Chemical Engineering Science, 1984, 39: 1435-1442.
[4]Selim M S, Sloan E D. Modeling and dissociation of an in-situ hydrate [C]. SPE 13597, 75, Proc. 1985 SPE California Regional Meeting, March 27-29, 1985.
[5]Ullerich J W, Selim M S, Sloan E D. Theory and measurement of hydrate dissociation [J]. AIChE Journal, 1987, 33: 747-752.
[6]Tsimpanogiannis I N, Lichtner P C. Parametric study of methane hydrate dissociation in oceanic sediments driven by thermal stimulation [J]. Journal of Petroleum Science and Engineering, 2007, 56: 165-175.
[7]Castaldi M J, Zhou Y, Yegulalp T M. Down-hole combustion method for gas production from methane hydrates [J]. Journal of Petroleum Science and Engineering, 2007, 56: 176-185.
[8] Sloan E D. Clathrate Hydrates of Natural Gas [M]. Dekker: New York, 1998.
[9] Ji C, Ahmadi G, Smith D H. Natural gas production from hydrate decomposition by depressurization [J]. Chemical Engineering Science, 2001, 6: 5801-5814.
[10] MakogonY F. Hydrates of hydrocarbons [M]. Tulsa, Oklahoma:Pennwen Publishing Company, 1997.
[11] Kamata Y, Ebinuma T, Omura R, et al. Decomposition behavior of artificial methane hydrate sediment by depressurization method [C]. Proceedings of the 5th international conference on gas hydrate 2005, 3: 818-821.
[12] Kneafsey T J, Tomutsa L, Moridis G J, et al. Methane hydrate formation and dissociation in a partially saturated core-scale sand sample [J]. Journal of Petroleum Science and Engineering, 2007, 56: 108-126.
[13] 孙长宇,马昌峰,陈光进,等. 二氧化碳水合物分解动力学研究[J]. 石油大学学报:自然科学版,2001,25(3): 8-10.
[14]Ota M, Morohashi K, Abe Y, et al. Replacement of CH4 in the hydrate by use of liquid CO2 [J]. Energy Conversion and Management, 2005, 46: 1680-1691.
[15] Goel N. In situ methane hydrate dissociation with carbon dioxide sequestration: Current knowledge and issues [J]. Journal of Petroleum Science and Engineering, 2006, 51: 169-184.
[16] 樊燕,刘道平,谢应明,等. 用CO2置换水合物沉积层中CH4可行性分析\[J\]. 天然气地球科学,2007,18(2): 317-320.
[17] 宁伏龙,蒋国盛,汤凤林,等. 利用地热开采海底天然气水合物[J]. 天然气工业,2006,26(12): 136-138.
[18] Verigin N N, Khabibullin I L, Khalikov G A. Izvestiya Akademii NaukSSSR\[J\]. Mekhanika Zhidkosti Gaza,1980,(1):174.
[19] Holder G D, Angert P F, Godbole S P. Simulation of gas production from a reservoir containing both gas hydrates and free natural gas [C]. Proceedings of 57th Society of Petroleum Engineers Technology Conference, New Orleans, 1982, September 26-29, SPE Paper 11005.
[20]Burshears M, O'Brien T J, Malone R D. A multi-phase, multi-dimendional, variable composition simulation of gas production from a conventional gas reservoir in contact with hydrates [C]. Proceedings of Unconventional Gas Technology Symposium, Louisville, KY, 1986, May 18-21,Sociey of Petroleum Engineers ,SPE Paper 15246.
[21]Masuda Y, Fujinaga Y, Naganawa S, et al. Modeling and experimental studies on dissociation of methane gas hydrates in berea sandstone cores [C]. Proceedings of the Third International Conference on Natural Gas Hydrates, Salt Lake City, UT, 1999, July 18-22.
[22]Tsypkin G. Mathematical models of gas hydrates dissociation in porous media [C]. In Holder G D, Bishnoi P R (Eds.), Gas hydrates: Challenges for the future, Vol. 912(pp.428-436).New York: New York Academy of sciences, 2000.
[23] Goel N, Wiggins M, Shah S. Analytical modeling of gas recovery from in situ hydrates dissociation [J]. Journal of Petroleum Science and Engineering, 2001, 29: 115-127.
[24] Sun X F, Mohanty K K. Kinetic simulation of methane hydrate formation and dissociation in porous media [J]. Chemical Engineering Science, 2006, 61:3476-3495.
[25] Yousif M H, Sloan E D. Experimental investigation of hydrate formation and dissociation in consolidated porous media [J]. SPE Reservoir Engineering, 1991, 6: 452-458.
[26] Gerami S, Pooladi-Darvish M. Predicting gas generation by depressurization of gas hydrates where the sharp-interface assumption is not valid [J]. Journal of Petroleum Science and Engineering, 2007, 56: 146-164.
[27] 陈科,刘建仪,张烈辉,等. 水合物气藏降压开采数学模型[J]. 天然气工业,2006,26 (1): 93-94.
[28]李娜,奚西峰,何小霞,等. 甲烷水合物分解动力学模型[J]. 天然气地球科学,2006,17(6): 880-883.
[29]杜庆军,陈月明,李淑霞,等. 天然气水合物注热开采数学模型[J]. 石油勘探与开发,2007,34(4): 470-473.

 

[1] 吴明涛,王晓冬,姚天福. 致密气藏气井非稳态线性渗流特征分析新方法[J]. 天然气地球科学, 2018, 29(7): 1060-1066.
[2] 汪道兵,葛洪魁,宇波,文东升,周珺,韩东旭,刘露. 页岩弹性模量非均质性对地应力及其损伤的影响[J]. 天然气地球科学, 2018, 29(5): 632-643.
[3] 金丽娜,于兴河,董亦思,单新,何玉林,林霖. 琼东南盆地水合物探区第四系深水沉积体系演化及与BSR关系[J]. 天然气地球科学, 2018, 29(5): 644-654.
[4] 苏佳纯,张金川,朱伟林. 非常规天然气经济评价对策思考[J]. 天然气地球科学, 2018, 29(5): 743-753.
[5] 王彬, 张强, 吕福亮, 杨涛涛, 杨志力, 孙国忠, 吴敬武, . 南海海域新生界沉积盆地天然气成藏条件及资源前景[J]. 天然气地球科学, 2018, 29(10): 1542-1552.
[6] 严谨,何佑伟,史云清,郑荣臣,程时清,于海洋,李鼎一. 致密气藏水平井压裂缝不均匀产气试井分析[J]. 天然气地球科学, 2017, 28(6): 839-845.
[7] 梁金强,付少英,陈芳,苏丕波,尚久靖,陆红锋,方允鑫. 南海东北部陆坡海底甲烷渗漏及水合物成藏特征[J]. 天然气地球科学, 2017, 28(5): 761-770.
[8] 吴闯,尹宏伟,于常青,皮金云,吴珍云,汪伟,张佳星. 青海省木里地区天然气水合物构造成藏机制——来自物理模拟实验的启示[J]. 天然气地球科学, 2017, 28(5): 771-784.
[9] 艾志久,王杰. 天然气水合物分解的动力学模型研究[J]. 天然气地球科学, 2017, 28(3): 377-382.
[10] 李彦龙,刘昌岭,刘乐乐,黄萌,孟庆国. 含水合物松散沉积物三轴试验及应变关系模型[J]. 天然气地球科学, 2017, 28(3): 383-390.
[11] 姜凤光,王小林,陈志海. 二氧化碳侵入前油气藏流体性质定量分析[J]. 天然气地球科学, 2017, 28(3): 488-493.
[12] 刘洁,张建中,孙运宝,赵铁虎. 南海神狐海域天然气水合物储层参数测井评价[J]. 天然气地球科学, 2017, 28(1): 164-172.
[13] 董大忠,王玉满,黄旭楠,张晨晨,管全中,黄金亮,王淑芳,李新景. 中国页岩气地质特征、资源评价方法及关键参数[J]. 天然气地球科学, 2016, 27(9): 1583-1601.
[14] 郭秋麟,李峰,陈宁生,郑曼,马忠. 致密油资源评价方法、软件及关键技术[J]. 天然气地球科学, 2016, 27(9): 1566-1575.
[15] 李建忠,吴晓智,郑民,郭秋麟,王社教,董大忠,陈晓明,谢红兵 . 常规与非常规油气资源评价的总体思路、方法体系与关键技术[J]. 天然气地球科学, 2016, 27(9): 1557-1565.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!