天然气地球科学 ›› 2022, Vol. 33 ›› Issue (4): 495–511.doi: 10.11764/j.issn.1672-1926.2021.12.001

• 天然气开发 •    下一篇

基于数值岩心重构模型的页岩渗透率影响机制分析

任岚1(),吴建军2,林然1(),赵金洲1,谭秀成1,吴建发3,宋毅3   

  1. 1.西南石油大学油气藏地质及开发工程国家重点实验室,四川 成都 610500
    2.中石油煤层气有限责任公司,北京 100028
    3.中国石油西南油气田公司,四川 成都 610051
  • 收稿日期:2021-08-08 修回日期:2021-11-18 出版日期:2022-04-10 发布日期:2022-04-22
  • 通讯作者: 林然 E-mail:renlanswpu@163.com;bob_home@126.com
  • 作者简介:任岚(1979-),男,四川南充人,教授,博士,主要从事油气田增产技术及理论研究. E-mail:renlanswpu@163.com.
  • 基金资助:
    国家自然科学基金青年科学基金项目“基于DEM-LBM流固耦合的深层页岩气水力裂缝长效支撑理论与方法研究”(52104039);国家自然科学基金项目“深层超深层页岩气水平井压裂缝网高效建造理论与方法研究”(U19A2043);中国石油—西南石油大学创新联合体科技合作项目“多层叠置页岩储层地质力学参数场预测及缝网创建理论与优化技术”(2020CX030201)

Investigation of shale permeability sensitivity mechanism based on digital core analysis

Lan REN1(),Jianjun WU2,Ran LIN1(),Jinzhou ZHAO1,Xiucheng TAN1,Jianfa WU3,Yi SONG3   

  1. 1.State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation,Southwest Petroleum University,Chengdu 610500,China
    2.PetroChina Coalbed Methane Co. ,Ltd. ,Beijing 100028,China
    3.PetroChina Southwest Oil & Gasfield Company,Chengdu 610051,China
  • Received:2021-08-08 Revised:2021-11-18 Online:2022-04-10 Published:2022-04-22
  • Contact: Ran LIN E-mail:renlanswpu@163.com;bob_home@126.com
  • Supported by:
    The National Natural Science Foundation of China(Youth Program)(52104039);the National Natural Science Foundation of China(U19A2043);the Science and Technology Cooperation Project of the CNPC-SWPU Innovation Alliance(2020CX030201)

摘要:

实验与理论研究表明,在水力压裂与页岩油气储层开发生产过程中,地层应力和孔隙压力的多重变化,特别是天然裂缝的破坏,可能使页岩储层渗透率发生显著变化。但目前对页岩渗透率变化规律分析的理论方法较少。基于离散元方法,首先建立了标准圆柱页岩数值岩心模型,采用美国Bakken页岩真实岩心实测数据对数值岩心进行了校准,使其岩石力学特征和渗流特性与真实岩心保持一致,在此基础上,重构了正方体页岩数值岩心,实现了从圆柱岩心向正方体岩心数值实验延伸。正方体数值岩心可开展真三轴加载下的页岩渗透率数值实验测试,并可模拟不同天然裂缝发育条件下三轴应力变化对页岩内天然裂缝破坏以及渗透率的影响。研究结果表明:不发育天然裂缝的页岩渗透率随着三轴应力增大而降低,随孔隙压力增大而升高;发育有天然裂缝的页岩渗透率与天然裂缝分布特征及其破坏情况密切相关,整体上随着三轴应力的增大呈现出“先降低—后陡增—再降低”的变化趋势。提出的页岩岩心数值实验方法对研究页岩渗透率敏感性的内在机制与外在表现特征具有重要参考作用,对页岩气压裂设计与高效开发具有重要的理论指导意义和矿场应用价值。

关键词: 页岩, 渗透率敏感, 离散元, 三轴应力, 天然裂缝, 水力压裂

Abstract:

Permeability is one of the most important parameters for reservoir exploitation, especially for unconventional reservoir such as shale gas reservoir. According to experimental results and field data, shale permeability will change with the variation of reservoir pressure and formation stress, especially when rock occurs failure due to pressure and stress perturbation during hydraulic fracturing, its permeability will change drastically. So far, however, measuring shale rock permeability by triaxial stress experiment is expensive and difficult. Particularly, there is no comprehensive theoretical method to estimate permeability change after rock occurs failure. This paper aims to use numerical method to investigate the dependence of shale rock permeability on triaxial stress and pore pressure, and analyzes the impact of rock failure, resulted from stress and pressure change, on the permeability. Firstly, this paper built a digital shale rock cylinder by combining discrete element method (DEM), fluid-solid coupling model, and servomechanical algorithm. Secondly, all the crucial micro parameters (particle number, size, stiffness, bond strength, etc.) of the digital rock were delicately calibrated according to the experimental data of real rock sample collected from Bakken shale reservoir, making the macro-mechanical property and seepage characteristic of digital rock consistent with real rock sample. Thirdly, based on the calibrated micro-parameters of digital rock cylinder, we re-constructed a digital rock cube, which could be used for numerical permeability test under true triaxial condition to simulate the permeability change under different pressure and stress (xyz-axis) states. Finally, some natural fractures (weak bonding plane) were preset in digital rock cube, and the shale rock permeability was estimated after fracture failure occurs due to pressure and stress change. The research results show that intact shale cube permeability will decrease with triaxial stress increasing or pore pressure decreasing. Besides, the permeability of shale rock cube will be affected by the natural fractures’ property and failure states. In general, as the triaxial stress increases, the natural fractures in shale rock cube will occur failure gradually, meanwhile, its permeability will rise remarkably in the beginning. However, after most of the natural fractures have occurred failure under high-stress or high-pressure states, shale permeability will turn to decrease as the stress continues to increase. This paper proposed a numerical method of shale rock permeability test to explore the inner mechanism and exterior behavior of shale permeability dependence on triaxial stress, pore pressure, and rock failure states, providing theoretical guidance and field application potential for fracturing design and efficient development of shale reservoir.

Key words: Shale, Permeability sensitivity, Discrete element method, Triaxial stress, Natural fractures, Hydraulic fracturing

中图分类号: 

  • TE357

图1

线性接触单元与平行连接单元模型"

图2

离散元模型颗粒连接示意"

图3

离散元模型流动通道示意"

图4

离散元模型流动域示意"

表1

Bakken组页岩圆柱体岩心测试参数[57]"

参数数值备注
岩心高度/m0.050 8
岩心直径/m0.025 4
孔隙度/%4.916
杨氏模量/GPa75.85
泊松比/无量纲0.217
抗压强度/MPa122.15CP: 0 MPa
150.24CP: 10 MPa
176.48CP: 20 MPa
内聚力/MPa35.104
摩擦系数/(°)32.9

渗透率

/(10-6 μm2

0.63孔隙压力: 0 MPa 周向围压: 0 MPa
0.122孔隙压力: 3.5 MPa 周向围压: 20 MPa
0.175孔隙压力: 5.5 MPa 周向围压: 20 MPa
0.199孔隙压力: 7.5 MPa 周向围压: 20 MPa
0.136孔隙压力: 7.5 MPa 周向围压: 30 MPa
0.133孔隙压力: 7.5 MPa 周向围压: 40 MPa

图5

圆柱体页岩离散元数值岩心(a)离散单元(球) (b)接触单元(线)"

表2

圆柱体页岩数值模型参数取值"

参数数值
岩心高度/m0.050 8
岩心直径/m0.025 4
岩石胶结系数/无量纲0.7
离散单元个数/无量纲3 790
接触单元个数/无量纲19 290
离散单元直径/m0.001
离散单元法向刚度/(N/m)2.70×1011
离散单元切向刚度/(N/m)8.00×1010
离散单元摩擦系数/无量纲0
平行连接单元法向刚度/(N/m)2.70×1013
平行连接单元切向刚度/(N/m)8.00×1012
平行连接单元抗张强度/Pa1.00×107
平行连接单元内聚力/Pa3.30×107
平行连接单元摩擦角/(°)30

图6

圆柱体页岩三轴抗压强度测试轴向应变与应力关系曲线"

图7

圆柱体页岩三轴抗压强度测试轴向与周向应变关系曲线(围压:0 MPa)"

图8

圆柱体页岩渗透率测试结束时刻孔隙压力分布情况(围压:20 MPa;孔压:7.5 MPa)"

表3

数值模拟页岩与真实页岩(Bakken组页岩)参数对比"

参数测量/模拟数值备注
真实岩心数值岩心相对误差/%
孔隙度/%4.9164.9120.08
杨氏模量/GPa75.8575.280.75
泊松比0.2170.2150.92
抗压强度/MPa122.15119.342.30周向围压: 0 MPa
150.24151.320.72周向围压: 10 MPa
176.48175.730.42周向围压: 20 MPa
渗透率/(10-6 μm20.630.6083.49孔隙压力: 0 MPa 周向围压: 0 MPa
0.1220.1192.46孔隙压力: 3.5 MPa 周向围压: 20 MPa
0.1750.1721.71孔隙压力: 5.5 MPa 周向围压: 20 MPa
0.1990.2042.51孔隙压力: 7.5 MPa 周向围压: 20 MPa
0.1360.1392.21孔隙压力: 7.5 MPa 周向围压: 30 MPa
0.1330.1283.76孔隙压力: 7.5 MPa 周向围压: 40 MPa

图9

正方体页岩离散元数值岩心"

表4

正方体页岩数值模型参数取值"

参数数值
岩心边长/m0.025 4
岩石胶结系数/无量纲0.7
离散单元个数2 230
接触单元个数10 578
离散单元直径/m0.001
离散单元法向刚度/(N/m)2.70×1011
离散单元切向刚度/(N/m)8.00×1010
离散单元摩擦系数/无量纲0
平行连接单元法向刚度/(N/m)2.70×1013
平行连接单元切向刚度/(N/m)8.00×1012
平行连接单元抗张强度/Pa1.00×107
平行连接单元内聚力/Pa3.30×107
平行连接单元摩擦角/(°)30

图10

正方体页岩渗透率测试结束时刻孔隙压力分布情况(围压:σx =σy =σz =20 MPa;孔压:7.5 MPa)"

图11

不同孔隙压力条件下x、y、z三轴应力共同变化对正方体页岩(不含天然裂缝)渗透率的影响"

图12

不同孔隙压力条件下x轴应力单独变化对正方体页岩(不含天然裂缝)渗透率的影响"

图13

内置一条天然裂缝(绿色圆盘)的正方体页岩数值模型"

表5

数值页岩中天然裂缝几何分布与岩石力学参数"

参数数值
天然裂缝直径/cm2.54
天然裂缝倾角/(°)90
天然裂缝逼近角/(°)30
天然裂缝抗张强度/MPa1.03
天然裂缝内聚力/MPa5.97
天然裂缝摩擦系数/无量纲0.20

图14

不同x轴方向应力条件下正方体数值岩心内破坏点空间分布"

图15

不同x轴方向应力条件下的正方体页岩天然裂缝破坏与渗透率变化情况"

图16

正方体页岩不同天然裂缝(绿色圆盘)密度数值模型"

表6

数值页岩中不同密度天然裂缝群几何分布与岩石力学参数"

参数数值
天然裂缝平均直径/cm0.254
天然裂缝数量/条50, 100, 200
天然裂缝平均倾角/(°)90
天然裂缝平均逼近角/(°)30
天然裂缝抗张强度/MPa1
天然裂缝内聚力/MPa6
天然裂缝摩擦系数/无量纲0.2

图17

不同天然裂缝数量与x轴方向应力条件下正方体页岩内破坏点(红色圆盘)空间分布"

图18

不同天然裂缝密度条件下x轴方向应力变化对正方体页岩破坏点数量与渗透率的影响"

图19

正方体页岩不同天然裂缝(绿色圆盘)倾角数值模型"

图20

不同天然裂缝倾角与x轴方向应力条件下正方体页岩内破坏点(红色圆盘)空间分布"

图21

不同天然裂缝倾角条件下x轴方向应力变化对正方体页岩破坏点数量与渗透率的影响"

1 李志强. 页岩气藏体积改造多尺度流动生产模拟研究[D]. 成都: 西南石油大学,2017:1-2.
LI Z Q. Research on Production Simulation Based on Multiscale Flow in Shale Gas Reservoir with Stimulated Reservoir Volume[D].Chengdu:Southwest Petroleum University,2017: 1-2.
2 LUFFEL D L, HOPKINS C W, SCHETTLER P D. Matrix permeability measurement of gas productive shales[C]. SPE Annual Technical Conference and Exhibition, 3-6 October, Houston, Texas, 1993.
3 SAKHAEE-POUR A, BRYANT S. Gas permeability of shale[J]. SPE Reservoir Evaluation & Engineering, 2012, 15(4): 401-409.
4 ADAMS B H. Stress-sensitive permeability in a high-permeability sandstone reservoir-the kuparuk field[C]. SPE California Regional Meeting. Ventura, California,1983.
5 WANG F P, REED R M. Pore networks and fluid flow in gas shales[C]. SPE Annual Technical Conference and Exhibition, 4-7 October. New Orleans, Louisiana,2009.
6 LIN R, REN L, ZHAO J, et al. Cluster spacing optimization of multi-stage fracturing in horizontal shale gas wells based on stimulated reservoir volume evaluation[J]. Arabian Journal of Geosciences, 2017, 10(2): 38.
7 REN L, LIN R, ZHAO J. Stimulated reservoir volume estimation and analysis of hydraulic fracturing in shale gas reservoir[J]. Arabian Journal for Science and Engineering, 2018, 43(11): 6429-6444.
8 REN L, LIN R, ZHAO J, et al. Stimulated reservoir volume estimation for shale gas fracturing: Mechanism and modeling approach[J].Journal of Petroleum Science and Engineering, 2018, 166: 290-304.
9 CHIN L Y, RAGHAVAN R, THOMAS L K. Fully-coupled geomechanics and fluid-flow analysis of wells with stress-dependent permeability[C]. SPE International Oil and Gas Con-ference and Exhibition,2-6 November,Beijing, China,1998.
10 DAVIES J P, DAVIES D K. Stress-dependent permeability: Characterization and modeling[J]. SPE Journal,2001,6(2): 224-235.
11 OFAGBOHUNMI S,CHALATURNYK R J,LEUNG J Y W. Coupling of stress-dependent relative permeability and reservoir simulation[C]. SPE Improved Oil Recovery Symposium, 14-18 April. Tulsa, Oklahoma, USA,2012.
12 代宇, 贾爱林, 尚福华. 考虑岩石变形效应的页岩气渗流模型[J]. 科学技术与工程, 2016, 16(11): 44-48.
DAI Y, JIA A L, SHANG F H. Seepage character research for shale gas reservoirs with consideration of rock deformation[J].Science Technology and Engineering,2016,16(11):44-48.
13 NELSON R A. Fracture Permeability in Porous Reservoirs: An Experimental and Field Approach[D]. College Station: Texas A & M University, 1975: 35-47.
14 GANGI A F. Variation of whole and fractured porous rock permeability with confining pressure[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1978, 15(5): 249-257.
15 BERNABE Y. The effective pressure law for permeability in chelmsford granite and barre granite[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1986, 23(3): 267-275.
16 WORTHINGTON P F. The stress response of permeability[C]. SPE Annual Technical Conference and Exhibition, 26-29 September. Houston, Texas, 2004.
17 CHEN D, PAN Z, YE Z. Dependence of gas shale fracture permeability on effective stress and reservoir pressure: Model match and insights[J]. Fuel, 2015, 139: 383-392.
18 XIAO W, LI T, LI M, et al. Evaluation of the stress sensitivity in tight reservoirs[J]. Petroleum Exploration and Development, 2016, 43(1): 115-123.
19 CIVAN F. Compressibility, porosity, and permeability of shales involving stress shock and loading/unloading hysteresis[C].Unconventional Resources Technology Conference. Houston, Texas,2018.
20 ZOBACK M D, BYERLEE J. Permeability and effective stress: Geologic notes[J]. AAPG Bulletin,1975,59(1): 154-158.
21 JONES F O.A laboratory study of the effects of confining pressure on fracture flow and storage capacity in carbonate rocks[J]. Journal of Petroleum Technology,1975,27(1): 21-27.
22 SEEBURGER D A, NUR A. A pore space model for rock permeability and bulk modulus[J]. Journal of Geophysical Research (Solid Earth), 1984, 89(B1): 527-536.
23 LEI G, DONG P, WU Z, et al. A fractal model for the stress-dependent permeability and relative permeability in tight sandstones[J]. Journal of Canadian Petroleum Technology, 2015, 54(1): 36-48.
24 GEILIKMAN M B, WONG S W, KARANIKAS J M. Stress-dependent permeability model of laminated gas shale[C]. 49th U.S. Rock Mechanics/Geomechanics Symposium, 28 June-1 July, San Francisco, California, 2015.
25 CAO C, LI T, ZHAO Y, et al. Multi-field coupling permeability model in shale gas reservoir[C]. SPE Middle East Oil & Gas Show and Conference, 6-9 March. Manama, Kingdom of Bahrain,2017.
26 WHEATON R. Dependence of shale permeability on pressure[J]. SPE Reservoir Evaluation & Engineering,2017,20(1): 228-232.
27 CUI G, XIA-TING F, PAN Z, et al. Impact of shale matrix mechanical interactions on gas transport during production[J]. Journal of Petroleum Science and Engineering,2020,184: 106524.
28 CHENEVERT M E, SHARMA A K. Permeability and effective pore pressure of shales[J]. SPE Drilling & Completion, 1993, 8(1): 28-34.
29 KATSUKI D, GUTIERREZ M, TUTUNCU A N. Laboratory determination of the continuous stress-dependent permeability of unconventional oil reservoir rocks[C]. Unconventional Resources Technology Conference,12-14 August. Denver, Colorado, USA,2013.
30 SINHA S, BRAUN E M, DETERMAN M D, et al. Steady-state permeability measurements on intact shale samples at reservoir conditions-effect of stress, temperature, pressure, and type of gas[C]. SPE Middle East Oil and Gas Show and Conference, 10-13 March. Manama, Bahrain, 2013.
31 HELLER R, VERMYLEN J, ZOBACK M J A B. Experimental investigation of matrix permeability of gas shales[J]. AAPG Bulletin, 2014, 98(5): 975-995.
32 MOGHADAM A A, CHALATURNYK R. Laboratory investigation of shale permeability[C]. SPE/CSUR Unconventional Resources Conference, 20-22 October. Calgary, Alberta, Canada, 2015.
33 ZHANG R, NING Z, YANG F, et al. Impacts of nanopore structure and elastic properties on stress-dependent permeability of gas shales[J]. Journal of Natural Gas Science and Engineering, 2015, 26: 1663-1672.
34 朱维耀, 田巍, 高英, 等. 页岩气渗流规律测试条件研究[J]. 天然气地球科学, 2015, 26(6): 1106-1112.
ZHU W Y, TIAN W, GAO Y, et al. Study on experiment conditions of seepage law of marine shale gas[J]. Natural Gas Geoscience, 2015, 26(6): 1106-1112.
35 张道川. 多场耦合作用下页岩渗流特性研究[D]. 重庆: 重庆大学, 2016: 36-50.
ZHANG D C. The Study of Seepage Characteristics in Shale Under Multi-field Coupling Conditions[D].Chongqing: Chong-qing University, 2016: 36-50.
36 张睿. 页岩储层有效应力及应力敏感机理研究[D]. 北京: 中国石油大学(北京), 2016: 94-104.
ZHANG R. Effective Stress Law and Stress Dependent Mechanism for the Permeability of Shale[D]. Beijing: China University of Petroleum (Beijing), 2016: 94-104.
37 董文强. 温度与有效应力对页岩储层应力敏感影响研究[J]. 石油化工应用,2018,37(3):62-66,72.
DONG W Q. Effects of temperature and effective stress on stress sensitivity of shale reservoirs[J]. Petrochemical Industry Application, 2018,37(3):62-66,72.
38 张道川, 周军平, 鲜学福, 等. 多场耦合作用下页岩渗透特性实验研究[J]. 地下空间与工程学报, 2018, 14(3): 613-621.
ZHANG D C, ZHOU J P, XIAN X F, et al. Experiment study on the coupling multi-field effect on the dynamic variation of permeability in shale[J]. Chinese Journal of Underground Space and Engineering, 2018, 14(3): 613-621.
39 赵瑜, 王超林, 曹汉, 等. 页岩渗流模型及孔压与温度影响机理研究[J]. 煤炭学报, 2018, 43(6): 1754-1760.
ZHAO Y, WANG C L, CAO H, et al. Influencing mechanism and modelling study of pore pressure and temperature on shale permeability[J]. Journal of China Coal Society, 2018, 43(6): 1754-1760.
40 LIU H, ZHANG J. An efficient laboratory method to measure the combined effects of knudsen diffusion and mechanical deformation on shale permeability[J]. Journal of Contaminant Hydrology, 2020, 232: 103652.
41 BHANDARI A R, FLEMINGS P B, POLITO P J, et al. Anisotropy and stress dependence of permeability in the barnett shale[J]. Transport in Porous Media, 2015, 108(2): 393-411.
42 KATSUKI D, DEBEN A P, ADEKUNLE O, et al. Stress-dependent permeability and dynamic elastic moduli of reservoir and seal shale[C]. Unconventional Resources Technology Conference, 1-3 August. San Antonio, Texas, 2016.
43 CHEN T, FENG X T, CUI G, et al. Experimental study of permeability change of organic-rich gas shales under high effective stress[J]. Journal of Natural Gas Science and Engineering, 2019, 64: 1-14.
44 GUTIERREZ M, ØINO L E, NYGåRD R. Stress-dependent permeability of a de-mineralised fracture in shale[J]. Marine and Petroleum Geology, 2000, 17(8): 895-907.
45 CHO Y, OZKAN E, APAYDIN O G. Pressure-dependent natural-fracture permeability in shale and its effect on shale-gas well production[J]. SPE Reservoir Evaluation & Engineering, 2013, 16(2): 216-228.
46 MOKHTARI M, ALQAHTANI A A, TUTUNCU A N, et al. Stress-dependent permeability anisotropy and wettability of shale resources[C]. Unconventional Resources Technology Conference, Denver, Colorado, USA. 12-14 August, 2013.
47 CAREY J W, LEI Z, ROUGIER E, et al. Fracture-permeability behavior of shale[J]. Journal of Unconventional Oil and Gas Resources, 2015, 11: 27-43.
48 黎国志. 页岩在CO2作用下的渗流—应力耦合实验研究[D]. 成都: 西南石油大学, 2016: 62-87.
LI G Z. Experimental Study on Seepage-Stress Coupling of Rock Under CO2[D]. Chengdu: Southwest Petroleum University, 2016: 62-87.
49 孙文吉斌, 左宇军, 邬忠虎, 等. 页岩渗流-损伤演化特征试验研究[J]. 中国矿业, 2017, 26(3): 142-145.
SUN W J B, ZUO Y J, WU Z H, et al. Experimental study on seepage-damage evolution of shale[J]. China Mining Magazine, 2017, 26(3): 142-145.
50 左宇军, 孙文吉斌, 邬忠虎, 等. 渗透压—应力耦合作用下页岩渗透性试验[J]. 岩土力学, 2018, 39(9): 3253-3260.
ZUO Y J, SUN W J B, WU Z H, et al. Experiment on permeability of shale under osmotic pressure and stress coupling[J]. Rock and Soil Mechanics, 2018, 39(9): 3253-3260.
51 LIU X, LI M, XU M, et al. Permeability of the hydrated shale under cyclic loading and unloading conditions[J]. Geofluids, 2020: 8863249.
52 TAKAHASHI M, KOIDE H, SUGITA Y. Three principal stress effects on permeability of shirahama sandstone[C]. 8th ISRM Congress, Tokyo, Japan. 25-29 September, 1995.
53 李铭辉. 真三轴应力条件下储层岩石的多物理场耦合响应特性研究[D]. 重庆: 重庆大学, 2016: 54-63.
LI M H. Research on multi-physics coupling behaviors of reservoir rocks under true triaxial stress conditions[D]. Chongqing: Chongqing University, 2016: 54-63.
54 LI M, CAO J, LI W. Stress and damage induced gas flow pattern and permeability variation of coal from Songzao coalfield in southwest china[J]. Energies, 2016, 9(5): 351.
55 LI M, YIN G, XU J, et al. Permeability evolution of shale under anisotropic true triaxial stress conditions[J]. International Journal of Coal Geology, 2016, 165: 142-148.
56 LI M,YIN G,XU J,et al.A novel true triaxial apparatus to stu-dy the geomechanical and fluid flow aspects of energy exploitations in geological formations[J]. Rock Mechanics and Rock Engineering, 2016,49(12):4647-4659.
57 HE J. Study about Petrophysical and Geomechanical Properties of Bakken Formation[D]. Grand Forks:University of North Dakota, 2015: 59-110.
58 WARPINSKI N R. Hydraulic fracturing in tight,fissured media[J]. Journal of Petroleum Technology,1991,43(2):146-209.
[1] 樊怀才, 张鉴, 岳圣杰, 胡浩然. 页岩气平台式井组井间干扰影响因素分析及井距优化[J]. 天然气地球科学, 2022, 33(4): 512-519.
[2] 李小明, 王亚蓉, 吝文, 马丽红, 刘德勋, 柳吉荣, 张宇. 湖北荆门探区五峰组—龙马溪组深层页岩微观孔隙结构与分形特征[J]. 天然气地球科学, 2022, 33(4): 629-641.
[3] 吴建发, 赵圣贤, 张瑛堃, 夏自强, 李博, 苑术生, 张鉴, 张成林, 何沅翰, 陈尚斌. 深层页岩气储层物质组成与孔隙贡献及其勘探开发意义[J]. 天然气地球科学, 2022, 33(4): 642-653.
[4] 邹晓艳, 李贤庆, 王元, 张吉振, 赵佩. 川南地区五峰组—龙马溪组深层页岩储层特征和含气性[J]. 天然气地球科学, 2022, 33(4): 654-665.
[5] 单国鑫, 程鹏, 肖贤明, 孙健, 高平. 过成熟煤系页岩平衡水吸附特征及其地质意义[J]. 天然气地球科学, 2022, 33(4): 666-676.
[6] 张琴,邱振,张磊夫,王玉满,肖玉峰,刘丹,刘雯,李树新,李星涛. 海陆过渡相页岩气储层特征与主控因素——以鄂尔多斯盆地大宁—吉县区块二叠系山西组为例[J]. 天然气地球科学, 2022, 33(3): 396-407.
[7] 梁岳立,葛家旺,赵晓明,张喜,李树新,聂志宏. 鄂尔多斯盆地东缘山西组2段海陆过渡相页岩高分辨率层序划分及勘探地质意义[J]. 天然气地球科学, 2022, 33(3): 408-417.
[8] 王以城,张磊夫,邱振,彭思钟,封从军,孙萌思. 鄂尔多斯盆地东缘二叠系山23亚段海陆过渡相页岩岩相类型与储层发育特征[J]. 天然气地球科学, 2022, 33(3): 418-430.
[9] 王鹏威,刘光祥,刘忠宝,陈筱,李鹏,蔡钡钡. 川东南—黔西北地区上二叠统龙潭组海陆过渡相页岩气富集条件及主控因素[J]. 天然气地球科学, 2022, 33(3): 431-440.
[10] 马元稹,王猛,李嘉敏,赵健光,贾腾飞,朱俊卿. 沁水盆地上古生界煤系页岩储层特征和含气性[J]. 天然气地球科学, 2022, 33(3): 441-450.
[11] 谢卫东,王猛,王华,段宏跃. 海陆过渡相页岩气储层孔隙多尺度分形特征[J]. 天然气地球科学, 2022, 33(3): 451-460.
[12] 马许平, 曾庆利. 多射孔压裂对水力裂缝扩展规律的影响[J]. 天然气地球科学, 2022, 33(2): 312-323.
[13] 王剑, 周路, 刘金, 陈俊, 郑孟林, 蒋欢, 张宝真. 准噶尔盆地吉木萨尔凹陷芦草沟组页岩层系甜点体烃类可流动性影响因素[J]. 天然气地球科学, 2022, 33(1): 116-124.
[14] 胡延旭, 韩春元, 康积伦, 李彬, 吴健平, 江涛, 樊杰, 叶大帅. 页岩油甜点储层成因新模式——以准噶尔盆地吉木萨尔凹陷芦草沟组为例[J]. 天然气地球科学, 2022, 33(1): 125-137.
[15] 方镕慧, 刘晓强, 张聪, 李美俊, 夏响华, 黄志龙, 杨程宇, 韩秋雅, 汤韩琴. 温度压力耦合作用下的页岩气吸附分子模拟[J]. 天然气地球科学, 2022, 33(1): 138-152.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵应成,周晓峰,王崇孝,王满福,郭娟娟 . 酒西盆地青西油田白垩系泥云岩裂缝油藏特征和裂缝形成的控制因素[J]. 天然气地球科学, 2005, 16(1): 12 -15 .
[2] 邵荣;叶加仁;陈章玉;. 流体包裹体在断陷盆地含油气系统研究中的应用概述[J]. 天然气地球科学, 2000, 11(6): 11 -14 .
[3] 何家雄;李明兴;陈伟煌;. 莺歌海盆地热流体上侵活动与天然气运聚富集关系探讨[J]. 天然气地球科学, 2000, 11(6): 29 -43 .
[4] Al-Arouri K;Mckirdy D;Boreham C(澳大利亚);孙庆峰(译). 用油源对比方法识别澳大利亚南塔鲁姆凹陷的石油系统[J]. 天然气地球科学, 2000, 11(4-5): 57 -67 .
[5] 付广;王剑秦. 地壳抬升对油气藏保存条件的影响[J]. 天然气地球科学, 2000, 11(2): 18 -23 .
[6] 马立祥. 岩石物理流动单元的概念及其研究现状[J]. 天然气地球科学, 2000, 11(2): 30 -36 .
[7] . 柴达木盆地――中国第四大气区[J]. 天然气地球科学, 0, (): 9 .
[8] 杜乐天;. 地球的5个气圈与中地壳天然气开发[J]. 天然气地球科学, 2006, 17(1): 25 -30 .
[9] 周世新;邹红亮;解启来;贾星亮;. 沉积盆地油气形成过程中有机-无机相互作用[J]. 天然气地球科学, 2006, 17(1): 42 -47 .
[10] 李美俊;卢鸿;王铁冠;吴炜强;刘菊;高黎惠;. 北部湾盆地福山凹陷岩浆活动与CO2 成藏的关系[J]. 天然气地球科学, 2006, 17(1): 55 -59 .