天然气地球科学 ›› 2021, Vol. 32 ›› Issue (2): 268–273.doi: 10.11764/j.issn.1672-1926.2020.08.005

• 天然气开发 • 上一篇    下一篇

页岩储层多簇限流射孔裂缝扩展规律

卢宇1,2(),赵志恒3(),李海涛2,刘畅2,罗红文2,肖晖1   

  1. 1.重庆科技学院,重庆 401331
    2.西南石油大学油气藏地质及开发工程国家重点实验室,四川 成都 610500
    3.中国石油西南油气田公司页岩气研究院,四川 成都 610051
  • 收稿日期:2020-07-06 修回日期:2020-07-30 出版日期:2021-02-10 发布日期:2021-03-10
  • 通讯作者: 赵志恒 E-mail:meltlu@163.com;zzh1989heng@163.com
  • 作者简介:卢宇(1990-),男,湖北荆州人,讲师,博士,主要从事油气井压裂完井优化研究.E-mail:meltlu@163.com.
  • 基金资助:
    重庆市教委科学技术研究项目(KJQN202001514);中国石油西南油气田公司“页岩气水平井段内多簇压裂优化设计研究”项目(20190302-18);重庆市自然科学基金项目(cstc2019jcyj-msxmX0069)

Study on the law of fracture propagation from multiple cluster limited entry perforation in shale reservoir

Yu LU1,2(),Zhi-heng ZHAO3(),Hai-tao LI2,Chang LIU2,Hong-wen LUO2,Hui XIAO1   

  1. 1.School of Petroleum Engineering,Chongqing University of Science & Technology,Chongqing 431331,China
    2.State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation,Southwest Petroleum University,Chengdu 610500,China
    3.Shale Gas Research Institute of Southwest Oil & Gasfield Company,Chengdu 610051,China
  • Received:2020-07-06 Revised:2020-07-30 Online:2021-02-10 Published:2021-03-10
  • Contact: Zhi-heng ZHAO E-mail:meltlu@163.com;zzh1989heng@163.com
  • Supported by:
    The Science and Technology Research Program of Chongqing Municipal Education Commission(KJQN202001514);The PetroChina Southwest Oil and Gasfield Company Multi Cluster Fracturing Optimization Design Research Project(20190302-18);The Chongqing Natural Science Foundation Project, China(cstc2019jcyj-msxmX0069)

摘要:

在多簇密集切割压裂情况下,多缝间诱导应力干扰现象严重,使得优化射孔簇参数促进多簇均衡改造变得尤为重要。采用耦合岩石变形和流体流动的多簇限流射孔裂缝扩展模型,结合裂缝形态定量评价指标,展开限流射孔参数对裂缝扩展影响规律研究。结果表明:段内六簇射孔压裂时,密集切割使得多簇间诱导应力场影响区更为复杂,高孔密、均匀布孔时多裂缝非均匀扩展严重,应力阴影效应对段内中部裂缝延伸抑制明显。小孔径等孔径射孔及低孔密限流射孔策略可有效促进段内多簇裂缝均衡扩展;且非均匀限流布孔时,保持段内总孔数不变,增加段内中间两簇布孔数,同时降低段内两端孔数的限流射孔策略可有效优化裂缝形态,提高多簇射孔簇效率。

关键词: 页岩储层, 限流射孔, 水力压裂, 裂缝扩展, 诱导应力

Abstract:

The induced stress interference is serious under the condition of dense cutting fracturing, which makes it more necessary to optimize perforation cluster parameters to promote balanced propagation from multiple perforation clusters. The fracture propagation model is proposed by coupling rock deformation and fluid flow, and fracture morphology quantitative evaluation index is established to study the fracture propagation law under limit entry perforating parameters. The results show that the influence area of induced stress field becomes more complex due to the dense cutting fracturing. For the case of high density and uniform distribution of perforation holes, the heterogeneous propagation of multiple fractures is significant due to the induced shadow effect on the internal cracks. In the case of a fracturing interval with six perforating clusters, the strategy of small diameter and low perforating density can effectively promote the uniform propagation from multiple clusters. In the case of non-uniform limited perforating, keeping the total number of perforations unchanged, increasing the number of perforations in the middle two clusters, and reducing the perforation number at both ends of the same fracturing stage, the limited entry perforation strategy can effectively optimize the fracture morphology and improve the efficiency of multi cluster fracturing.

Key words: Shale gas reservoir, Limited entry perforating, Hydraulic fracturing, Fracture propagation, Induced stress

中图分类号: 

  • TE21

图1

裂缝孔眼直径为14 mm时裂缝扩展与诱导应力场分布"

图2

裂缝孔眼直径为10 mm时裂缝扩展与诱导应力场分布"

图3

裂缝孔眼直径为6 mm时裂缝扩展与诱导应力场分布"

图4

不同射孔孔径下的各射孔簇进入量占比与均匀指数"

图5

射孔数8孔/簇时裂缝扩展形态与诱导应力场分布"

图6

射孔数4孔/簇时裂缝扩展与诱导应力场分布"

图7

不同分簇射孔簇布孔数下的各射孔簇进入量占比与均匀指数"

图8

布孔模式5-5-8-8-5-5孔/簇时裂缝扩展与诱导应力场分布"

图9

布孔模式7-7-4-4-7-7孔/簇时多簇裂缝扩展与诱导应力场分布"

图10

非均匀射孔密度下的各射孔簇进入量占比与均匀指数"

1 胥云,雷群,陈铭,等.体积改造技术理论研究进展与发展方向[J].石油勘探与开发,2018,45(5):874-887.
XU Y, LEI Q, CHEN M, et al. Progress and development of volume stimulation techniques[J].Petroleum Exploration & De-velopment, 2018,45(5): 874-887.
2 徐加祥, 丁云宏, 杨立峰,等. 基于扩展有限元的水力压裂缝间干扰及裂缝形态分析[J]. 天然气地球科学, 2018, 29(9):1356-1363.
XU J X, DING Y H, YANG L F,et al. Analysis of stress interference and geometry of hydraulic fractures based on the extended finite element method[J]. Natural Gas Geoscience, 2018, 29(9):1356-1363.
3 赵金洲,赵金,胡永全,等 .水力压裂裂缝应力场变化规律[J].天然气地球科学,2019,30(12):1677-1683.
ZHAO J Z, ZHAO J,HU Y Q, et al. Study on stress field distribution of hydraulic fracturing[J].Natural Gas Geoscience,2019,30(12):1677-1683.
4 孙峰,逄铭玉,张启汉,等.水平井压裂多裂缝同步扩展数值模拟[J].中南大学学报:自然科学版,2017,48(7):1803-1808.
SUN F, FENG Y M, ZHANG Q H, et al. Numerical simulation of simultaneous propagation of multiple fractures in horizontal well[J]. Journal of Central South University:Science and Technology,2017,48(7):1803-1808.
5 REN L, LIN R, ZHAN J Z, et al. Simultaneous hydraulic fracturing of ultra-low permeability sandstone reservoirs in China: Mechanism and its field test[J].Journal of Central South University, 2015 ,22(4):1427-1436.
6 PEIRCE A, BUNGER A. Interference fracturing: Nonuniform distributions of perforation clusters that promote simultaneous growth of multiple hydraulic fractures[J]. SPE Journal, 2015, 20(2): 384-395.
7 LECAMPION B. An extended finite element method for hydraulic fracture problems[J].Communications in Numerical Me-thods in Engineering, 2009, 25(2): 121-133.
8 ZHANG F, DONTONTSOV E. Modeling hydraulic fracture propagation and proppant transport in a two-layer formation with stress drop[J]. Engineering Fracture Mechanics, 2018, 199 (3):705-720.
9 LU Y, LI H T, LU C, et al. The effect of completion strategy on fracture propagation from multiple cluster perforations in fossil hydrogen energy development [J]. International Journal of Hydrogen Energy, 2019, 44 (14):7168-7180.
10 赵金洲,陈曦宇,李勇明,等.水平井分段多簇压裂模拟分析及射孔优化[J].石油勘探与开发,2017,44(1): 117-124.
ZHAO J Z, CHEN X Y, LI Y M, et al. Numerical simulation of multi-stage fracturing and optimization of perforation in a horizontal well[J]. Petroleum Exploration & Development, 2017,44(1): 117-124.
11 HADDAD M, SEPEHRMOORI K. XFEM-based CZM for the simulation of 3D multiple-cluster hydraulic fracturing in quasi-brittle shale formations[J].Rock Mechanics and Rock En-gineering, 2016,49(12):4731-4748.
12 ZENG Q, LIU Z, WANG T. Fully coupled simulation of multiple hydraulic fractures to propagate simultaneously from a perforated horizontal wellbore[J].Computational Mechanics, 2018,61(1-2):137-155.
13 MANCHANDA R, BRYANT E C, BHARDWAJ P. Strategies for effective stimulation of multiple perforation clusters in horizontal wells[J]. SPE Production & Operations, 2017,33(3): 539-556.
14 WU K, OLSON J E. Simultaneous multifracture treatments: Fully coupled fluid flow and fracture mechanics for horizontal wells [J]. SPE Journal, 2015,20(2): 337-346.
15 BUNGER A, JEFFREY R G, ZHANG X. Constraints on simultaneous growth of hydraulic fractures from multiple perforation clusters in horizontal wells[J]. SPE Journal, 2014,19(4):608-620.
16 LECAMPION B, DESROCHES J. Simultaneous initiation and growth of multiple radial hydraulic fractures from a horizontal wellbore[J].Journal of the Mechanics and Physics of Solids, 2015,82(1): 235-258.
17 PEIRCE A, BUNGER A. Interference fracturing: Nonuniform distributions of perforation clusters that promote simultaneous growth of multiple hydraulic fractures[J]. SPE Journal, 2015,20(2):384-395.
[1] 马许平, 曾庆利. 多射孔压裂对水力裂缝扩展规律的影响[J]. 天然气地球科学, 2022, 33(2): 312-323.
[2] 商晓飞, 龙胜祥, 段太忠. 页岩气藏裂缝表征与建模技术应用现状及发展趋势[J]. 天然气地球科学, 2021, 32(2): 215-232.
[3] 付海峰, 才博, 修乃岭, 王欣, 梁天成, 刘云志, 严玉忠. 含层理储层水力压裂缝高延伸规律及现场监测[J]. 天然气地球科学, 2021, 32(11): 1610-1621.
[4] 张瑛堃, 陈尚斌, 李学元, 王慧军. 页岩气储层水力压裂扩展有限元模拟方法及应用[J]. 天然气地球科学, 2021, 32(1): 109-118.
[5] 游利军, 李鑫磊, 康毅力, 陈明君, 刘江. 富有机质页岩储层热激致裂增渗的有利条件[J]. 天然气地球科学, 2020, 31(3): 325-334.
[6] 赵金洲,王强,胡永全,任岚,傅成浩,赵超能. 多孔眼裂缝竞争起裂与扩展数值模拟[J]. 天然气地球科学, 2020, 31(10): 1343-1354.
[7] 陈立超, 王生维. 煤岩断裂力学性质对储层压裂改造的影响[J]. 天然气地球科学, 2020, 31(1): 122-131.
[8] 徐加祥, 杨立峰, 丁云宏, 刘哲, 高睿, 王臻. 基于四参数随机生长模型的页岩储层应力敏感分析[J]. 天然气地球科学, 2019, 30(9): 1341-1348.
[9] 张晗. 四川盆地龙马溪组页岩储层缝网导流能力优化[J]. 天然气地球科学, 2019, 30(7): 955-962.
[10] 陈立超, 王生维, . 煤岩弹性力学性质与煤层破裂压力关系[J]. 天然气地球科学, 2019, 30(4): 503-511.
[11] 谢卫东, 王猛, 代旭光, 王彦迪. 山西河东煤田中—南部煤系页岩气储层微观特征[J]. 天然气地球科学, 2019, 30(4): 512-525.
[12] 曾凡辉, 唐波涛, 王涛, 郭建春, 肖勇军, 张守仁. 考虑渗滤效应的压裂裸眼井破裂压力预测模型[J]. 天然气地球科学, 2019, 30(4): 549-556.
[13] 赵金洲,赵金,胡永全,黄婷,刘欣佳. 水力压裂裂缝应力场变化规律[J]. 天然气地球科学, 2019, 30(12): 1677-1683.
[14] 周彤,苏建政,李凤霞,刘国庆,廖如刚. 基于停泵压力降落曲线分析的压后裂缝参数反演[J]. 天然气地球科学, 2019, 30(11): 1646-1654.
[15] 汪道兵,葛洪魁,宇波,文东升,周珺,韩东旭,刘露. 页岩弹性模量非均质性对地应力及其损伤的影响[J]. 天然气地球科学, 2018, 29(5): 632-643.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 旷理雄,郭建华,王英明,冯永宏,李广才 . 柴窝堡凹陷达坂城次凹油气成藏条件及勘探方向[J]. 天然气地球科学, 2005, 16(1): 20 -24 .
[2] 邵荣;叶加仁;陈章玉;. 流体包裹体在断陷盆地含油气系统研究中的应用概述[J]. 天然气地球科学, 2000, 11(6): 11 -14 .
[3] 何家雄;李明兴;陈伟煌;. 莺歌海盆地热流体上侵活动与天然气运聚富集关系探讨[J]. 天然气地球科学, 2000, 11(6): 29 -43 .
[4] 廖成君. VSP技术在锦612复杂断块油藏开发部署研究中的应用[J]. 天然气地球科学, 2005, 16(1): 117 -122 .
[5] 杜乐天;. 地球的5个气圈与中地壳天然气开发[J]. 天然气地球科学, 2006, 17(1): 25 -30 .
[6] 周世新;邹红亮;解启来;贾星亮;. 沉积盆地油气形成过程中有机-无机相互作用[J]. 天然气地球科学, 2006, 17(1): 42 -47 .
[7] 曹华;龚晶晶;汪贵锋;. 超压的成因及其与油气成藏的关系[J]. 天然气地球科学, 2006, 17(3): 422 -425 .
[8] 杜乐天. 国外天然气地球科学研究成果介绍与分析-----以索科洛夫的著作为主线[J]. 天然气地球科学, 2007, 18(1): 1 -18 .
[9] 孔庆芬,王可仁. 鄂尔多斯盆地西缘奥陶系烃源岩热模拟试验研究[J]. 天然气地球科学, 2006, 17(2): 187 -191 .
[10] 刘全有;刘文汇;Krooss B M;王万春;戴金星;. 天然气中氮的地球化学研究进展[J]. 天然气地球科学, 2006, 17(1): 119 -124 .