天然气地球科学 ›› 2020, Vol. 31 ›› Issue (9): 1261–1270.doi: 10.11764/j.issn.1672-1926.2020.05.020

• 非常规天然气 • 上一篇    下一篇

页岩吸附超临界CH4的热力学特征

薛培1,2(),张丽霞1,2(),梁全胜1,2,师毅3,曹成1,2,汤延帅4   

  1. 1.陕西延长石油(集团)有限责任公司研究院,陕西 西安 710075
    2.陕西省陆相页岩气成藏与开发重点实验室,陕西 西安 710075
    3.延长石油集团油气勘探公司,陕西 延安 716000
    4.延长油田股份有限公司七里村采油厂,陕西 延安 716000
  • 收稿日期:2020-03-16 修回日期:2020-05-26 出版日期:2020-09-10 发布日期:2020-09-04
  • 通讯作者: 张丽霞 E-mail:gwl330@163.com;309907081@qq.com
  • 作者简介:薛培(1987-),男,陕西延安人,高级工程师,博士,主要从事非常规油气地质与开发研究.E-mail:gwl330@163.com.
  • 基金资助:
    国家科技重大专项(2017ZX05039001005);延长石油青年基金项目(ycsy2020qnjj-B-06)

Isothermal adsorption properties of supercritical methane on shale

Pei XUE1,2(),Li-xia ZHANG1,2(),Quan-sheng LIANG1,2,Yi SHI3,Cheng CAO1,2,Yan-shuai TANG4   

  1. 1.Research Institute, Shaanxi Yanchang Petroleum (Group) Co. Ltd. , Xi’an 710075, China
    2.Shaanxi Key Laboratory of Lacustrine Shale Gas Accumulation and Exploitation, Xi’an 710075, China
    3.Yanchang Petroleum Group Exploration Company, Yan’an 716000, China
    4.Qilicun Oil Production Plant, Yanchang Oilfield Co. Ltd. , Yan’an 716000, China
  • Received:2020-03-16 Revised:2020-05-26 Online:2020-09-10 Published:2020-09-04
  • Contact: Li-xia ZHANG E-mail:gwl330@163.com;309907081@qq.com

摘要:

为完善页岩等量吸附热计算方法,明确页岩吸附超临界CH4的热力学特征,选用温度区间为26.85~199.85 ℃、压力范围为0.08~14 MPa的页岩等温吸附数据,系统检验常用吸附相密度计算方法的合理性,并基于绝对吸附量分析等量线标绘法的适用范围及页岩等量吸附热特征。结果表明:①经检验,常用的吸附相密度计算方法中Ozawa经验公式法适用于较宽温压范围内的绝对吸附量校正;②Lnp-1/T曲线在温度区间为149.85~199.85 ℃且nab为0.103 8~0.280 0 mmol/g时不具有线性特征,因此该温度及吸附量范围内等量线标绘法不再适用,同时Lnp-1/T曲线的nab取值应当与Lnp-nab曲线保持一致,以此获得的等量吸附热曲线才能全面地反映吸附过程的热力学特征;③页岩吸附超临界CH4的等量吸附热随着吸附量的增加呈现先增大后减小的非单调变化,表明在吸附早期,CH4分子间的相互作用力对等量吸附热的影响占主导,当吸附量增加到一定程度后,页岩表面的非均一性占主导。

关键词: 页岩, 过剩吸附量, 吸附相密度, 绝对吸附量, 等量吸附热

Abstract:

In order to improve the calculation method of the isosteric adsorption heat, clarify thermodynamic characteristics of CH4, the shale isotherm adsorption data with temperature range of 26.85-199.85 ℃ and pressure range of 0.08-14 MPa are selected to verify the rationality of the common calculation method of adsorption phase density, analyze the applicability of the adsorption isostere plotting method and the characteristic of isosteric adsorption heat of shale using absolute adsorption capacity. And the following research results were obtained. Firstly, Ozawa empirical formula is suitable for the correction of absolute adsorption capacity in a wide range of temperature and pressure. Secondly, in the temperature ranges from 149.85 ℃ to 199.85 ℃, and nab ranges from 0.103 8 mmol/g to 0.280 0 mmol/g, the curve of Lnp-nab has no linear characteristic, so the adsorption isostere plotting method is not suitable in the above temperature and nab ranges. The nab value of Lnp-1/T curve should be consistent with that of Lnp-nab curve, so that the isosteric adsorption heat curve can fully reflect the thermodynamic characteristics of the adsorption process. Finally, the adsorption heat of supercritical CH4 on shale increases at first and then decreases with the increase of adsorption capacity. It shows that in the early stage of adsorption, the influence of the interaction between molecules of CH4 on the adsorption heat of supercritical CH4 is dominant. When the adsorption capacity increases to a certain extent, the heterogeneity of the shale surface is dominant.

Key words: Shale, Surface excess mass, Adsorbed phase density, Absolute adsorbed amount, Isosteric heat of adsorptionFoundation items:The China National Science and Technology Major Project (Grant No. 2017ZX05039001005), The Yanchang Petroleum Youth Fund Project(Grant No. ycsy2020qnjj-B-06).

中图分类号: 

  • TE132.3

表1

实验样品矿物学特征"

样品石英/%斜长石/%钾长石/%方解石/%菱铁矿/%黄铁矿/%
含量44.41.01.30.50.41.4
样品白铁矿/%云母/%伊利石/%伊利石/蒙脱石/%高岭石/%绿泥石/%
含量0.89.55.929.90.74.2

图1

页岩吸附CH4等温吸附曲线(数据引自文献[16])"

图2

CH4的密度曲线(数据引自NIST数据库)"

表2

常用的吸附相密度计算方法"

估算方法计算公式引用文献
常数近似法范德瓦尔兹常数近似ρa=ρvan=MRTc8pc[22]
常压沸点液体密度近似ρa=ρlp[23,24]
临界密度近似ρa=ρc[25]
Ozawa经验公式法ρa=ρbexp[-0.002?5×(T-Tb)][26]
过剩吸附量曲线方程拟合法Langmuir方程拟合法nex=nab,Lppab,L+p1-ρgρa[27]
L—F方程拟合法nex=nab,Lbpm1+bpm1-ρgρa[21]
曲线下降段的线性拟合nex=a+bρg[29]

图3

不同计算方法获得的吸附相密度曲线"

图4

校正后的绝对吸附量曲线"

图5

Lnp—nab曲线的指数函数拟合"

表3

Lnp—nab指数函数拟合参数"

温度/℃方程拟合参数及相关系数
abcR2
26.8516.950 06.300 02.47×10-40.998 8
29.8516.957 36.297 91.56×10-40.998 8
34.8517.207 96.404 02.08×10-40.998 1
44.8517.109 66.233 87.97×10-50.996 6
64.8516.887 05.770 61.14×10-50.993 9
84.8516.859 15.501 02.22×10-60.991 1
99.8516.888 15.450 53.57×10-70.988 0
124.8516.866 05.169 31.12×10-80.986 5
149.8516.371 44.704 81.04×10-120.985 4
174.8516.37074.629 42.44×10-150.981 4
199.8516.496 24.719 23.09×10-180.981 0

图6

不同绝对吸附量下的Lnp—nab曲线"

图7

nab为0.103 8~0.28mmol/g范围内的Lnp—nab曲线"

图8

等量吸附热曲线"

图9

吸附量取值对等量吸附热曲线单调性的影响"

1 CURTIS J B. Fractured shale-gas systems[J]. AAPG Bulletin,2002,86(11):1921-1938.
2 赵玉集,郭为,熊伟,等.页岩等温吸附/解吸影响因素研究[J].天然气地球科学,2014,25(6):940-946.
ZHAO Y J,GUO W,XIONG W, et al. Study of impact factors on shale gas adsorption and desorption[J]. Natural Gas Geoscience, 2014,25(6):940-946.
3 李武广,杨胜来,陈峰,等.温度对页岩吸附解吸的敏感性研究[J].矿物岩石,2012,32(2):115-120.
LI W G,YANG S L,CHEN F, et al.The sensitivity study of shale gas adsorption and desorption with rising reservoir temperature[J].Journal of Mineralogy and Petrology, 2012,32(2):115-120.
4 崔永君, 张庆玲, 杨锡禄. 不同煤的吸附性能及等量吸附热的变化规律[J]. 天然气工业, 2003, 23(7): 130-131.
CUI Y J, ZHANG Q L,YANG X L. The change rules of adsorption capacity and isosteric heat of adsorption of differentcoals[J]. Natural Gas Industry, 2007, 23(7): 130-131.
5 蔺亚兵, 马东民, 刘钰辉,等. 温度对煤吸附甲烷的影响实验[J]. 煤田地质与勘探, 2012,40(6): 24-28.
LIN Y B, MA D M, LIU Y H, et al. Experiment of the influence of temperature on coalbed methane adsorption[J]. Coal Geology & Exploration, 2012,40(6): 24-28.
6 卢守青, 王亮, 秦立明. 不同变质程度煤的吸附能力与吸附热力学特征分析[J]. 煤炭科学技术, 2014,42(6): 130-135.
LU S Q, WANG L, QIN L M. Analysis on adsorption capacity and adsorption thermodynamic characteristics of different metamorphic degree coals[J]. Coal Science and Technology, 2014,42(6): 130-135.
7 岳高伟, 王兆丰, 康博. 基于吸附热理论的煤—甲烷高低温等温吸附线预测[J]. 天然气地球科学, 2015, 26(1): 148-153.
YUE G W, WANG Z F,KANG B.Prediciton for isothermal adsorption curve of coal/CH4 based on adsorption heat theory[J]. Natural Gas Geoscience, 2015, 26(1): 148-153.
8 郭为, 熊伟, 高树生, 等. 温度对页岩等温吸附/解吸特征影响[J]. 石油勘探与开发, 2013, 40(4): 481-485.
GUO W, XIONG W, GAO S S,et al. Impact of temperature on the isothermal adsorption/desorption characteristics of shale gas[J]. Petroleum Exploration and Development, 2013, 40(4): 481-485.
9 杨峰, 宁正福, 王庆, 等. 甲烷在页岩上的吸附热力学[J]. 中南大学学报:自然科学版, 2014, 45(8): 2871-2877.
YANG F, NING Z F, WANG Q, et al. Thermodynamic analysis of methane adsorption on gas shale[J]. Journal of Central South University:Science and Technology, 2014, 45(8): 2871-2877.
10 杨峰, 宁正福, 刘慧卿, 等. 页岩对甲烷的等温吸附特性研究[J]. 特种油气藏, 2013, 20(5): 133-136.
YANG F, NING Z F, LIU H Q,et al. Methane adsorption characteristics of gas shale[J]. Special Oil & Gas Reservoirs, 2013, 20(5): 133-136.
11 李晓媛, 曹峰, 岳高凡, 等. 柴达木盆地东部石炭系页岩吸附特性实验研究[J]. 地学前缘, 2016, 23(5): 95-102.
LI X Y, CAO F, YUE G F, et al. The experimental study of adsorption characterisitic of Carboniferous shale in Eastern Qaidam[J]. Earth Science Frontiers, 2016, 23(5): 95-102.
12 马东民, 曹石榴, 李萍,等. 页岩气与煤层气吸附/解吸热力学特征对比[J]. 煤炭科学技术, 2015, 43(2):64-67.
MA D M, CAO S L, LI P, et al. Comparison on adsorption and desorption thermodynamics features between shale gas and coalbed methane[J]. Coal Science and Technology, 2015, 43(2): 64-67.
13 白建平, 张典坤, 杨建强, 等. 寺河3号煤甲烷吸附解吸热力学特征[J]. 煤炭学报, 2014, 39(9): 1812-1819.
BAI J P, ZHANG D K, YANG J Q, et al. Thermodynamic characteristics of adsorption-desorption of methane in coal seam 3 at Sihe Coal Mine[J]. Journal of China Coal Society, 2014, 39(9): 1812-1819.
14 李树刚, 白杨, 林海飞, 等. CH4,CO2和N2多组分气体在煤分子中吸附热力学特性的分子模拟[J]. 煤炭学报, 2018, 43(9): 114-121.
LI S G, BAI Y, LIN H F,et al. Molecular simulation of adsorption thermodynamics of multicomponent gas in coal[J]. Journal of China Coal Society, 2018, 43(9): 114-121.
15 林海飞, 蔚文斌, 李树刚, 等.煤体吸附CH4和CO2热力学特性试验研究[J].中国安全科学学报,2018,28(6):129-134.
LIN H F, WEI W B, LI S G, et al. Experimental study on thermodynamics characteristics of CH4 and CO2 adsorption on coal[J]. China Safety Science Journal, 2018, 28(6): 129-134.
16 REXER T F T, BENHAM M J, APLIN A C, et al. Methane adsorption on shale under simulated geological temperature and pressure conditions[J]. Energy & Fuels, 2013, 27(6):3099-3109.
17 周理, 吕昌忠, 王怡林, 等. 述评超临界温度气体在多孔固体上的物理吸附[J]. 化学进展, 1999, 11(3):221-226.
ZHOU L, LV C Z, WANG Y L,et al. Physisorption of gases on porous solids at above-critical temperatures[J].Progress in Chemistry, 1999, 11(3):221-226.
18 TAN Z,GUBBINS K E. Adsorption in carbon micropores at supercritical temperatures[J]. The Journal of Physical Chemistry, 1990, 94(15):6061-6069.
19 薛培, 张丽霞, 梁全胜, 等.陆相页岩吸附CH4的热力学特征——以鄂尔多斯盆地延长气田上三叠统延长组页岩为例[J].天然气工业, 2019, 39(11):64-73.
XUE P, ZHANG L X, LIANG Q S, et al.Thermodynamic characteristics of CH4 adsorption by continental shale: A case study of the Upper Triassic Yanchang shale in the YanchangGasfield,Ordos Basin[J].Natural Gas Industry, 2019, 39(11):64-73.
20 SALEM M M K,BRAEUER P, SZOMBATHELY M V, et al. Thermodynamics of high-pressure adsorption of argon, nitrogen, and methane on microporous adsorbents[J]. Langmuir, 1998, 14(12):3376-3389.
21 周尚文,王红岩,薛华庆,等.页岩过剩吸附量与绝对吸附量的差异及页岩气储量计算新方法[J]. 天然气工业,2016,36(11):12-20.
ZHOU S W,WANG H Y, XUE H Q, et al. Difference between excess and absolute adsorption capacity of shale and a new shale gas reservecalculation method[J]. Natural Gas Industry, 2016, 36(11):12-20.
22 NIKOLAEV K M. DUBININ M M. Concerning adsorptional properties of carbon adsorbents 3. A study of adsorption isotherms of gases and vapors on active carbons over a wide interval of temperatures, including the critical region[J]. Bulletin of the Academy of Sciences of the USSR, Division of Chemical Science, 1958, 7(10): 1124-1133.
23 FINDENEGG G H. Fluid adsorption up to the critical point. Experimental study of a wetting fluid/solid interface[J]. Journal of Chemical Physics, 1984, 81(7): 3270-3276.
24 MENON P G. Adsorption at high pressures[J]. Chemical Review, 1968, 68(3): 277-294.
25 MEHTA S D, DANNER R P. An improved potential theory method for prediction gas-mixture adsorption equilibria[J]. Industiral and Engineering Chemistry Fundamentals, 1985, 24(3): 325-330.
26 OZAWA S, KUSUMI S, OGINO Y. Physical adsorption of gases at high pressure. IV. An improvement of the Dubinin-Astakhov adsorption equation[J]. Journal of Colloid and Interface Science, 1976, 56(1): 83-91.
27 ROSS D J K, BUSTIN R M. Impact of mass balance calculations on adsorption capacities in microporous shale gas reservoirs[J]. Fuel, 2007, 86(17/18): 2696-2706.
28 张庆玲, 曹利戈. 煤的等温吸附测试中数据处理问题研究[J]. 煤炭学报,2003, 28(2):131-135.
ZHANG Q L, CAO L G. Study of data processing in coal sorption isotherm testing[J]. Journal of China Coal Society, 2003, 28(2): 131-135.
29 CLARKSON C R, HAGHSHENAS B. Modeling of supercritical fluid ad-sorption on organic-rich shales and coal[C]//SPE Unconventional Resources Conference-USA, 10-12 April 2013, The Woodlands, Texas, USA. DOI: http://dx.doi.org/10.2118/164532-MS.
doi: 10.2118/164532-MS
30 胡涛,马正飞,姚虎卿. 甲烷超临界高压吸附等温线研究[J]. 天然气化工(C1化学与化工),2002,27(2):36-40.
HU T,MA Z F, YAO H Q.Study on high pressure adsorption isotherms of supercritical methane[J].Natural Gas Chemical Industry(C1: Chemistry and Chemical Engineering), 2002, 27(2):36-40.
31 近藤精一,石川达雄,安部郁夫.吸附科学[D].李希国,译.北京:化学工业出版社,2005.
KONDO S, ISHIKAWA Y,ABE I. Adsorption Science[M]. LI X G,Translate.Beijing:Chemical Industry Publishing House, 2005.
32 尹帅, 丁文龙, 刘建军, 等. 基于微孔充填模型的页岩储层吸附动力学特征分析[J]. 高校地质学报, 2014,20(4):635-641.
YIN S, DING W L, LIU J J, et al. Adsorption dynamics analysis of shale reservoir based on micro-pore filling model[J].Geological Journal of China Universities,2014,20(4):635-641.
33 DUNNE J A, MARIWALS R, RAO M B ,et al. Calorimetric heats of adsorption and adsorption isotherms. 1. O2, N2, Ar, CO2, CH4, C2H6 and SF6 on silicalite[J]. Langmuir,1996, 12(24):5888-5895.
34 MYERS A L. Thermodynamics of adsorption in porous materials[J]. Aiche Journal, 2002, 48(1):145-160.
35 周理, 周亚平. 关于氢在活性炭上高压吸附特性的实验研究[J]. 中国科学:B辑, 1996, 26(5): 473-480.
ZHOU L,ZHOU Y P. Experimental study on high pressure adsorption of hydrogen on activated carbon[J]. Science in China:Series B, 1996, 26(5): 473-480.
36 Ruthven DM. Principle of Adsorption and Adsorption Process[M]. New York: John Wilev& Sons Inc, 1984.
[1] 龙胜祥, 刘娅昭, 许华明, 陈前, 程喆. 四川盆地中国石化探区天然气勘探开发领域与技术攻关方向[J]. 天然气地球科学, 2020, 31(9): 1195-1203.
[2] 李腾飞,田辉,肖贤明,程鹏,王星,伍耀文,吴子瑾. 样品粒径对高过成熟度页岩低压气体吸附实验结果的影响[J]. 天然气地球科学, 2020, 31(9): 1271-1284.
[3] 陈璐,胡志明,熊伟,端祥刚,常进. 页岩气扩散实验与数学模型[J]. 天然气地球科学, 2020, 31(9): 1285-1293.
[4] 牛强,张焕旭,朱地,徐志尧,仰云峰,丁安徐,高和群,张立生. 川东南五峰组—龙马溪组页岩气录井碳同位素特征及其地质意义[J]. 天然气地球科学, 2020, 31(9): 1294-1305.
[5] 魏祥峰, 刘珠江, 王强, 魏富彬, 袁桃. 川东南丁山与焦石坝地区五峰组—龙马溪组页岩气富集条件差异分析与思考[J]. 天然气地球科学, 2020, 31(8): 1041-1051.
[6] 罗胜元, 陈孝红, 岳勇, 李培军, 蔡全升, 杨睿之. 中扬子宜昌地区沉积—构造演化与寒武系页岩气富集规律[J]. 天然气地球科学, 2020, 31(8): 1052-1068.
[7] 王志战. 页岩油储层DT2核磁共振解释方法[J]. 天然气地球科学, 2020, 31(8): 1178-1184.
[8] 邵德勇, 张六六, 张亚军, 张瑜, 罗欢, 乔博, 闫建萍, 张同伟. 中上扬子地区下寒武统富有机质页岩吸水特征及对页岩气勘探的指示意义[J]. 天然气地球科学, 2020, 31(7): 1004-1015.
[9] 于萍, 张瑜, 闫建萍, 邵德勇, 张六六, 罗欢, 乔博, 张同伟. 四川盆地龙马溪组页岩吸水特征及3种页岩孔隙度分析方法对比[J]. 天然气地球科学, 2020, 31(7): 1016-1027.
[10] 席斌斌, 申宝剑, 蒋宏, 杨振恒, 王小林. 天然气藏中CH4—H2O—NaCl体系不混溶包裹体群捕获温压恢复及应用[J]. 天然气地球科学, 2020, 31(7): 923-930.
[11] 戴金星, 董大忠, 倪云燕, 洪峰, 张素荣, 张延玲, 丁麟. 中国页岩气地质和地球化学研究的若干问题[J]. 天然气地球科学, 2020, 31(6): 745-760.
[12] 刘洪林, 王怀厂, 张辉, 赵伟波, 刘燕, 刘德勋, 周尚文. 四川盆地东部小河坝组沥青纳米孔隙网络及其成藏意义[J]. 天然气地球科学, 2020, 31(6): 818-826.
[13] 彭泽阳, 龙胜祥, 张永贵, 卢婷, 王濡岳. 适用于高温高压条件的等温吸附曲线方程[J]. 天然气地球科学, 2020, 31(6): 827-834.
[14] 景辅泰, 罗霞, 杨智, 张丽君, 李士祥, 陈勇, 曾云锋. 页岩层系致密储层物性下限——以鄂尔多斯盆地三叠系延长组长7段为例[J]. 天然气地球科学, 2020, 31(6): 835-845.
[15] 郑爱维, 梁榜, 舒志国, 张柏桥, 李继庆, 陆亚秋, 刘莉, 舒志恒. 基于大数据PLS法的页岩气产能影响因素分析[J]. 天然气地球科学, 2020, 31(4): 542-551.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!