天然气地球科学 ›› 2020, Vol. 31 ›› Issue (11): 1603–1614.doi: 10.11764/j.issn.1672-1926.2020.05.005

• 非常规天然气 • 上一篇    下一篇

海拉尔盆地褐煤全孔径结构特征及影响因素

杨青1(),李剑1,田文广1,孙斌1,祝捷2,杨宇航2   

  1. 1.中国石油天然气股份有限公司勘探开发研究院,北京 100083
    2.中国矿业大学(北京),北京 100083
  • 收稿日期:2020-03-03 修回日期:2020-04-28 出版日期:2020-11-10 发布日期:2020-11-24
  • 作者简介:杨青(1988),女,陕西白水人,工程师,主要从事煤层气地质研究.E-mail:yangq69@petrochina.com.cn.
  • 基金资助:
    国家科技重大专项“东北地区中低煤阶煤层气规模开发区块优选评价”(2016ZX05041-004);中国石油天然气股份公司重大科技专项“煤层气勘探开发关键技术研究与应用”(2017E-14)

Characteristics on pore structures on full scale of lignite and main controlling factors in Hailar Basin

Qing YANG1(),Jian LI1,Wen-guang TIAN1,Bin SUN1,Jie ZHU2,Yu-hang YANG2   

  1. 1.PetroChina Research Institute of Petroleum Exploration & Development,Beijing 100083,China
    2.China University of Mining & Technology(Beijing),Beijing 100083,China
  • Received:2020-03-03 Revised:2020-04-28 Online:2020-11-10 Published:2020-11-24

摘要:

煤岩孔隙结构特征是判断煤储层含气性的关键因素之一,孔隙结构的精细表征对于厚煤层中优质储层的识别意义重大,但褐煤储层孔隙结构特征难以通过单一手段全面表征。以扫描电镜电子成像技术(SEM)为基础,利用低温液氮吸附实验、高压压汞实验在孔径探测范围及精度上的互补开展联合分析,实现海拉尔盆地下白垩统伊敏组褐煤样品全孔径结构表征,并探讨褐煤孔隙结构的影响因素。结果表明:①研究区煤样总孔容、总孔面积随孔隙尺寸分布存在明显差异。伊敏煤矿等煤样孔体积的贡献主要来自大孔;吸附面积主要由微孔及过渡孔提供。牙克石煤矿煤样孔体积的主要贡献来自微孔,微孔贡献总孔面积的82.07%。②显微组分中腐殖组含量增加有利于微孔、过渡孔发育;惰质组含量的增加有利于中孔、大孔的发育。③煤样结构保存指数、森林指数与总孔容呈正相关关系,与总孔面积呈负相关关系;总孔容随凝胶化指数增大而减小,与总孔面积变化规律相反;地下水流动指数与总孔容、总孔面积间关系不明显。④成煤环境为无覆水的氧化环境,形成原生组织孔丰富、中孔—大孔为主、孔隙形态以槽状孔或狭缝孔为主的孔隙结构。成煤期覆水程度较深时,煤层凝胶化程度高,植物原生组织孔减少,中孔—大孔优先被矿物填充,孔隙结构呈低孔容、高孔面积的特点。

关键词: 褐煤, 孔隙结构, 总孔容, 总孔面积, 煤相, 成煤环境

Abstract:

Pore structure characteristics of coal are one of the key factors for gas storage judgement of coal reservoir. The fine characterization of pore structure is of great significance for the identification of high-quality reservoir in thick coal seams. However,it is difficult for lignite reservoir to fully characterize the reservoir space characteristics by a single means. On the basis of scanning electron microscope (SEM), the full pore size structure of lignite samples of the Lower Cretaceous Yimin Formation in Hailaer Basin was characterized by using the complementary analysis of low-temperature liquid nitrogen adsorption experiment and high-pressure mercury injection experiment in pore size detection range and accuracy, and the influencing factors of pore structure of lignite were discussed. The results show: (1) The total pore volume and total pore area of coal samples in the study area are significantly different with the pore size distribution. The contribution of pore volume of coal samples from Yimin Formation is mainly from macropores; and adsorption area is mainly provided by micropores and transition pores. The main contribution of the pore volume of Yakeshi coal samples comes from the micropores and transition pores which contribute 99.73% of the total pore area. (2) The increasing increase of huminite is beneficial to the development of micropores and transit-pores. The increasing increase of inertinite content contributes to the development of mesopore and macropores. (3) The tissue preservation index and vegetation index of coal samples have a positive correlation with the total pore volume, and a negative correlation with the total pore area; the total pore volume decreases with the increase of gelification indices, and the change rule of the total surface area is opposite; the relationship between the groundwater influence and the total pore volume and the total pore area is not obvious. (4) The coal forming environment is dry forest swamp with an oxidation environment, forming a pore structure with abundant plant tissue pores, medium pores and macropores, and the pore morphology is mainly trough pores or slit pores. The coal forming environment with wide scales and deep of overlying water is characterized by high degree of gelatinization and decreasing primary tissue pores of coal seams. Mesopores and macropores are preferentially filled with minerals, contributing to the specific pore structure with lower pore volume and higher specific surface area.

Key words: Lignite coal, Pore characteristics, Pore volume, Specific surface area, Coal facie, Coal-forming environmentFoundation items: The National Science and Technology Major Project (Grant No. 2016ZX05041-004), The Major science and technology projects of Petrochina Co.Ltd.“Research and application of key technologies for coalbed methane exploration and development”(Grant No. 2017E?14)

中图分类号: 

  • TE121.1+3
1 赵力,杨曙光. 新疆煤层气产业发展现状及存在的问题[J].中国煤层气,2018,15(3):3-6.
ZHAO L,YANG S G. Development status and existing problems of Xinjiang’ s CBM industry[J]. Coal Geology of China,2018,15(3):3-6.
2 孙粉锦,李五忠,孙钦平,等. 二连盆地吉尔嘎朗图凹陷低煤阶煤层气勘探[J]. 石油学报, 2017, 38(5):485-492.
SUN F J,LI W J, SUN Q P,et al. Low-rank coalbed methane exploration in Jiergalangtu sag,Erlian Basin[J]. Acta Petrolei Sinica, 2017,38(5):485-492.
3 晋香兰,张培河,吴敏杰. 鄂尔多斯盆地低煤阶煤储层孔隙特征及地质意义[J],煤田地质与勘探,2012,40(10):22-26.
JIN X L,ZHANG P H,WU M J. Pore features and geological significance of low rank coal reservoirs in Ordos Basin[J]. Coal Geology & Exploration,2012,40(10):22-26.
4 秦勇,国外煤层气成因与储层物性研究进展与分析[J],地学前缘,2005,12(3):289-298.
QIN Y. Advances in overseas geological research on coalbed gas:Origin and reservoir characteristics of coalbed gas[J]. Earth Science Frontiers. 2005,12(3):289-298.
5 傅雪海,秦勇,薛秀谦,等. 煤储层孔、裂隙系统分形研究[J]. 中国矿业大学学报:自然科学版,2001,30(5):225-228.
FU X H, QIN Y, XUE X Q,al el. Research on fractals of pore and fracture-structure of coal reservoirs[J]. Journal of China University of Mining & Technology,2001,30(5):225-228.
6 田忠斌,魏书宏,王建青,等. 沁水盆地中东部海陆过渡相页岩微观孔隙结构特征[J]. 煤炭学报,2017,42(7):1818-1827.
TIAN Z B, WEI S H, WANG J Q,et al. Characteristics of micro-scale pore structures of marine-continental transitional shale from the mid-eastern area,Qinshui Basin[J]. Journal of China Coal Society, 2017,42(7):1818-1827.
7 陈贞龙,汤达祯,许浩,等.滇东黔西地区煤层气储层孔隙系统与可采性[J]. 煤炭学报,2010,35(8):158-163.
CHEN Z L, TANG D Z, XU H,et al. The pore system properties of coalbed methane reservoirs and recovery in western Guizhou and eastern Yunnan[J]. Journal of China Coal Society, 2010,35(8):158-163.
8 张慧,李小彦,郝琦,等.中国煤的扫描电子显微镜研究[M]. 北京:地质出版社,2003:64-72.
ZHANG H, LI X Y, HAO Q,et al. Study on Coal in China by Scan Electron Microscope[M]. Beijing:Geological Publishing house,2003:64-72.
9 姚艳斌,刘大锰. 基于核磁共振弛豫谱技术的页岩储层物性与流体特征研究[J]. 煤炭学报, 2018, 43(1):181-189.
YAO Y B,LIU D M. Petrophysical properties and fluids transportation in gas shale:A NMR relaxation spectrum analysis method[J]. Journal of China Coal Society, 2018,43(1):181-189.
10 卢双舫,李俊乾,张鹏飞, 等. 页岩油储集层微观孔喉分类与分级评价[J]. 石油勘探与开发, 2018,45(3): 436-444.
LU S F,LI J Q,ZHANG P F,et al. Classification of microscopic pore-throats and the grading evaluation on shale oil reservoirs[J]. Petroleum Exploration and Development,2018,45(3):436-444.
11 CLARKSON C R,SOLANO N,BUSTINR M, et al. Pore struture characterization of North American shale gas reservoirs using USANS / SANS, gas adsorption,and mercury intrusion[J]. Fuel,2013,103:606-616.
12 肖佃师,卢双舫,陆正元,等. 核磁共振和恒速压汞方法测定致密砂岩孔喉结构[J]. 石油勘探与开发,2016,43(6):962-970.
XIAO D S,LU S F,LU Z Y,et al. Combining nuclear magnetic resonance and rate-controlled porosimetry to probe the pore-throat structure of tight sandstone[J]. Petroleum Exploration and Development,2016,43(6):962-970.
13 张吉振,李贤庆,张学庆,等. 煤系页岩储层孔隙结构特征和演化[J]. 煤炭学报,2019,44(S1):195-204.
ZHANG J Z, LI X Q, ZHANG X Q, et al. Microscopic characteristics of pore structure and evolution in the coal-bearing shale[J]. Journal of China Coal Society, 2019, 44(S1): 195-204.
14 赵迪斐,郭英海,毛潇潇,等.基于压汞、氮气吸附与FE-SEM 的无烟煤微纳米孔特征[J].煤炭学报,2017,42(6):1517-1526.
ZHAO D F,GUO Y H,MAO X X,et al. Characteristics of macro-nanopores in anthracite coal based on mercury injection,nitrogen adsorption and FE-SEM[J]. Journal of China Coal Society,2017,42(6): 1517-1526.
15 李阳,张玉贵,张浪,等. 基于压汞、低温N2吸附和CO2吸附的构造煤孔隙结构表征[J]. 煤炭学报,2019,44 (4):1188-1196.
LI Y, ZHANG Y G, ZHANG L,et al. Characterization on pore structure of tectonic coals based on the method of mercury intrusion,carbon dioxide adsorption and nitrogen adsorption[J]. Journal of China Coal Society,2019,44(4):1188-1196.
16 郭彪,邵龙义,张强,等.内蒙古海拉尔盆地早白垩世含煤岩系层序地层与聚煤规律[J].古地理学报, 2014,5(10):632-640.
GUO B,SHAO L Y,ZHANG Q,et al. Sequence stratigraphy and coal accumulation pattern of the Early Cretaceous coal measures in Hailar Basin, Inner Mongolia[J]. Journal of Paleogeography. 2014,5(10):632-640.
17 孙斌,邵龙义,赵庆波,等. 海拉尔盆地煤层气成藏机理及勘探方向[J]. 天然气工业,2007, 27(7):12-15.
SUN B,SHAO L Y,ZHAO Q B,et al. Reservoiring mechanism of coalbed methane and exploration direction in Hailare Basin[J]. Nature Gas Industry,2007,27(7):12-15.
18 CHALMERS G R, BUSTIN R M,POWER I M. Characterization of gas shale pore systems by porosimetry, pycnometry, surface area, and field emission scanning electron microscopy/transmission electron microscopy image analyses: Examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig unit[J]. AAPG Bulletin,2012,96(6):1099-1119.
19 SING K S W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984)[J]. Pure and Applied Chemistry,1985,57(4):603-619.
20 陈萍,唐修义. 低温液氮吸附法与煤中微孔隙特征的研究[J]. 煤炭学报,2001,26(5):552-556.
CHEN P,TANG X Y. The research on the adsorption of nitrogen in low temperature and micro-pore properties in coal[J]. Journal of China Coal Society,2001,26(5):552-556.
21 祝武权,汤达祯,许浩,等. 褐煤孔隙结构及比表面积特征[J].煤田地质与勘探,2016,44(6):59-63
ZHU W Q,TANG D Z,XU H,et al. Characteristics of pore structure and specific surface area of lignite[J]. Coal Geology & Exploration,2016,44(6):59-63.
22 张松航,汤达祯,唐书恒,等. 鄂尔多斯盆地东缘煤层气储集与产出条件[J].煤炭学报,2009,34(10):1297-1304.
ZHANG S H,TANG D Z,TANG S H,et al. Preservation and deliverability characteristics of coalbed methane in eastern margin of Ordos Basin[J].Journal of China Coal Society,2009,34(10):1297-1304.
23 张松航,汤达祯,唐书恒,等.鄂尔多斯盆地东缘煤储层微孔隙结构特征及其影响因素[J].地质学报,2008,82(10):1341-1349.
ZHANG S H,TANG D Z,TANG S H,et al. The characters of coal beds micropores and its influence factors in the eastern margin of Ordos Basin[J]. Acta Geologica Sinica,2008,82(10):1341-1349.
24 张琴,梁峰,梁萍萍,等. 页岩分型特征及主控因素研究[J]. 中国矿业大学学报,2020,49(1):110-122.
ZHANG Q,LIANG F,LIANG P P,et al. Investigation of fractal characteristics and its main controlling factors of shale reservoir: A case study of the Longmaxi shale in Weiyuan shale gas field[J]. Journal of China University of Mining & Technology,2020,49(1):110-122.
25 杨峰,宁正福,孔德涛,等. 高压压汞法和氮气吸附法分析页岩孔隙结构[J]. 天然气地球科学,2013, 24(3):450-455.
YANG F,NING Z F,KONG D T, et al. Pore structure of shales from high pressure mercury injection and nitrogen adsorption method[J]. Natural Gas Geoscience,2013, 24(3):450-455.
26 HODOT B B,宋世钊,王佑安. 煤与瓦斯突出[M]. 北京:中国工业出版社,1966:27-30.
HODOT B B, SONG S Z, WANG Y A. Outburst of Coal and Coalbed Gas(Chinese Translation)[M].Beijing:China Coal Industry Press,1966:27-30.
27 王博洋,秦勇,申建,等. 二连盆地褐煤矿物质特征及其对孔隙结构的影响[J]. 煤炭科学技术,2017,45(9): 32-41.
WANG B Y,QIN Y,SHEN J,et al. Mineral features of lignite in Erlian Basin and influences to pore structure[J]. Coal Science and Technology,2017,45(9):32-41.
28 LU Y J,LIU D M,CAI Y D,et al. Pore-fractures of coalbed methane reservoir restricted by coal facies in Sangjiang-Muling coal-bearing basins, northeast China[J]. Energies, 2020(13):1196.
29 DIESSEL C F K. On the correlation between coal facies and depositional environments[C]∥ Advances in the Study of the Sydney Basin Newcastle,1986:19-22.
30 DIESSEL C F K. Coal-bearing Depositional Systems[M]. Berlin:Springer,1992:721.
31 OSKAY R G,CHRISTANIS K,INANER H,et al. Palaeoenvironmental reconstruction of the eastern part of the Karapınar-Ayrancı coal deposit(central Turkey)[J]. International Journal of Coal Geology,2016(163):100-111.
32 代世峰,任德贻,李生盛,等.内蒙古准格尔黑岱沟主采煤层的煤相演替特征[J].中国科学,D辑,2007,37(S1):119-126.
DAI S F,REN D Y,LI S S,et al.The evolution and characteristic of coal facies in Heidaigou mine of Junger,Inner Mongolia[J]. Science in China,Series D,2007,37(S1):119-126.
33 ZHANG S H,ANG S H,TAMG D Z,et al. The characteristics of coal reservoir pores and coal facies in Liulin district,Hedong coal field of China[J].International Journal of Coal Geology,2010(81):117-127.
34 张鹏飞,金奎励,吴涛,等. 吐哈盆地含煤沉积与煤成油[M]. 北京:煤炭工业出版社,1997:168-176.
ZHANG P F,JIN K L,WU T,et al. Coal-bearing Sedimentary and Coal Formed Oil,Turpan-Hami Basin[M]. Beijing:China Coal Industry Press,1997:168-176.
35 KALAITZIDIS S,BOUZINOS A, PAPAZISIMOU S, et al. A short-term establishment of forest fen habitat during Pliocene lignite formation in the Ptolemais Basin, NW Macedonia, Greece[J]. International Journal of Coal Geology, 2004,57(3):243-263.
36 CALDER J H,GIBLING M R,MUKHOPADHYAY P. Peat formation in a Westphalian B piedmont setting,Cumberland basin,Nova Scotia:Implications for the maceral-based interpretation of rheotrophic and raised Paleomires[J].Bull De La Societe Geologique De France, 1991,162(2):283-298.
[1] 刘世明, 唐书恒, 霍婷, 谭富荣, 刘达成, 王金喜. 柴达木盆地东缘上石炭统泥页岩孔隙结构及分形特征[J]. 天然气地球科学, 2020, 31(8): 1069-1081.
[2] 康毅力, 李潮金, 游利军, 李家学, 张震, 王涛. 塔里木盆地深层致密砂岩气层应力敏感性[J]. 天然气地球科学, 2020, 31(4): 532-541.
[3] 陈斐然, 魏祥峰, 刘珠江, 敖明冲, 燕继红. 四川盆地二叠系龙潭组页岩孔隙发育特征及主控因素[J]. 天然气地球科学, 2020, 31(11): 1593-1602.
[4] 许耀波, 朱玉双. 高阶煤的孔隙结构特征及其对煤层气解吸的影响[J]. 天然气地球科学, 2020, 31(1): 84-92.
[5] 徐加祥, 杨立峰, 丁云宏, 刘哲, 高睿, 王臻. 基于四参数随机生长模型的页岩储层应力敏感分析[J]. 天然气地球科学, 2019, 30(9): 1341-1348.
[6] 吴松涛, 林士尧, 晁代君, 翟秀芬, 王晓瑞, 黄秀, 徐加乐. 基于孔隙结构控制的致密砂岩可动流体评价——以鄂尔多斯盆地华庆地区上三叠统长6致密砂岩为例[J]. 天然气地球科学, 2019, 30(8): 1222-1232.
[7] 孙兵华, 张廷山, . 鄂尔多斯盆地张家湾地区长7页岩油气储集特征及其影响因素[J]. 天然气地球科学, 2019, 30(2): 274-284.
[8] 王伟,朱玉双,余彩丽,赵乐,陈大友. 鄂尔多斯盆地致密砂岩储层孔喉分布特征及其差异化成因[J]. 天然气地球科学, 2019, 30(10): 1439-1450.
[9] 李文镖, 卢双舫, 李俊乾, 张鹏飞, 陈晨, 王思远. 南方海相页岩物质组成与孔隙微观结构耦合关系[J]. 天然气地球科学, 2019, 30(1): 27-38.
[10] 张世铭, 王建功, 张小军, 张婷静, 曹志强, 杨麟科. 酒西盆地间泉子段储层流体赋存及渗流特征[J]. 天然气地球科学, 2018, 29(8): 1111-1119.
[11] 刘喜杰,马遵敬,韩冬,王海燕,马立涛,葛东升. 鄂尔多斯盆地东缘临兴区块致密砂岩优质储层形成的主控因素[J]. 天然气地球科学, 2018, 29(4): 481-490.
[12] 王小垚,曾联波,周三栋,史今雄,田鹤. 低阶煤储层微观孔隙结构的分形模型评价[J]. 天然气地球科学, 2018, 29(2): 277-288.
[13] 尹娜, 薛莲花, 姜呈馥, 杨爽, 高潮, 陈国俊. 富有机质页岩生烃阶段孔隙演化及分形特征[J]. 天然气地球科学, 2018, 29(12): 1817-1828.
[14] 靳子濠, 周立宏, 操应长, 付立新, 李宏军, 楼达, 孙沛沛, 冯建园, 远光辉, 王铸坤. 渤海湾盆地黄骅坳陷二叠系砂岩储层储集特征及成岩作用[J]. 天然气地球科学, 2018, 29(11): 1595-1607.
[15] 姜黎明,余春昊,齐宝权,朱涵斌,王勇军. 孔洞型碳酸盐岩储层饱和度建模新方法及应用[J]. 天然气地球科学, 2017, 28(8): 1250-1256.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 于俊峰;夏斌;许静;. 对渤海湾盆地张扭、压扭性构造的一点认识[J]. 天然气地球科学, 2006, 17(4): 473 -476 .
[2] 伍藏原;李汝勇;张明益;张明亮;翟姝玲;罗敏;. 微地震监测气驱前缘技术在牙哈凝析气田的应用[J]. 天然气地球科学, 2005, 16(3): 390 -393 .
[3] 王万春,刘文汇, 刘全有. 浅层混源天然气判识的碳同位素地球化学分析[J]. 天然气地球科学, 2003, 14(6): 469 -473 .
[4] 江厚顺,白彦华,冉建立 . 水平井产能预测及射孔参数优选系统研究[J]. 天然气地球科学, 2007, 18(6): 891 -893 .
[5] 刘建锋 彭军 周康 殷孝梅 唐勇 刘金库. 川中—川南过渡带须家河组二段高分辨率层序地层学研究[J]. 天然气地球科学, 2009, 20(2): 199 -203 .
[6] 陈宗清. 论四川盆地中二叠统栖霞组天然气勘探[J]. 天然气地球科学, 2009, 20(3): 325 -334 .
[7] 李艳丽. 页岩气储量计算方法探讨[J]. 天然气地球科学, 2009, 20(3): 466 -470 .
[8] 郭振华, 赵彦超. 大牛地气田盒2段致密砂岩气层测井评价[J]. 天然气地球科学, 2010, 21(1): 87 -94 .
[9] 王明艳, 郭建华, 旷理雄, 朱锐. 湘中坳陷涟源凹陷烃源岩油气地球化学特征[J]. 天然气地球科学, 2010, 21(5): 721 -726 .
[10] 宋琦, 王树立, 陈燕, 郑志, 谢磊. 天然气水合物新型动力学模型与实验研究[J]. 天然气地球科学, 2010, 21(5): 868 -874 .