天然气地球科学 ›› 2020, Vol. 31 ›› Issue (11): 1637–1647.doi: 10.11764/j.issn.1672-1926.2020.05.004

• 天然气地球化学 • 上一篇    下一篇

西昌盆地上三叠统白果湾组天然气地球化学特征及勘探潜力

魏洪刚1,2(),陈燃3(),牟必鑫1,2,陈杨1,2,雷玉雪1,2,何伟1,2   

  1. 1.四川省煤田地质工程勘察设计研究院,四川 成都 610072
    2.页岩气评价与开采四川省重点实验室,四川 成都 610091
    3.四川省矿产资源储量评审中心,四川 成都 610045
  • 收稿日期:2020-02-10 修回日期:2020-04-27 出版日期:2020-11-10 发布日期:2020-11-24
  • 通讯作者: 陈燃 E-mail:561049334@qq.com;296583387@qq.com
  • 作者简介:魏洪刚(1990-),男,四川资阳人,工程师,硕士,主要从事油气地质与地球化学研究.E-mail:561049334@qq.com.
  • 基金资助:
    四川省页岩气资源调查评价项目“西昌盆地页岩气资源调查评价和区块优选”(DK-2017-F-008);四川省科技计划项目(重点)“西昌盆地构造特征及页岩气保存条件研究”(2018JY0625)

Geochemical characteristics and exploration potential of natural gas in Upper Triassic Baiguowan Formation, Xichang Basin

Hong-gang WEI1,2(),Ran CHEN3(),Bi-xin MOU1,2,Yang CHEN1,2,Yu-xue LEI1,2,Wei HE1,2   

  1. 1.Sichuan Institute of Coal Field Geological Engineering Exploration and Designing,Chengdu 610072,China
    2.Shale Gas Evaluation and Exploitation Key Laboratory of Sichuan Province,Chengdu 610091,China
    3.Sichuan Assessment Center of Mineral Resources Reserves,Chengdu 610045,China
  • Received:2020-02-10 Revised:2020-04-27 Online:2020-11-10 Published:2020-11-24
  • Contact: Ran CHEN E-mail:561049334@qq.com;296583387@qq.com

摘要:

西昌盆地位于四川盆地西侧,油气勘探程度低。最近昭地1井油气调查井在上三叠统白果湾组获得较好的油气显示,为研究西昌盆地油气资源潜力提供了难得条件。通过对昭地1井天然气组分、碳同位素组成展开地球化学分析,讨论了气源,再结合邻区油气基本条件对比分析了勘探潜力。结果表明,昭地1井天然气组分以甲烷为主;天然气δ13C1值介于-48.74‰~-41.25‰之间;δ13C2值介于-29.77‰~-28.96‰之间;δ13C3值介于-25.81‰~-21.91‰之间。天然气组分和碳同位素特征显示为典型油型气。气源分析结果显示昭地1井天然气来源于白果湾组,为同源不同成熟度天然气混合气藏。西昌盆地油气基础地质条件与川西坳陷具有诸多相似之处,可对比性好,天然气资源潜力较大。

关键词: 气源, 成因类型, 白果湾组, 昭地1井, 西昌盆地

Abstract:

The Xichang Basin is located to the west of the Sichuan Basin with a low degree of oil and gas exploration. Recently, the Well Zhaodi 1 oil and gas survey well obtained a good oil and gas display in the Upper Triassic Baiguowan Formation, which provides rare conditions for studying the potential of oil and gas resources in the basin. In this paper, we analyzed the composition and carbon isotope composition of natural gas of Well Zhaodi 1, discussed the gas source and determined the exploration potential by comparting with the basic conditions of oil and gas in the adjacent area. The experimental analysis results show that the main component of the natural gas is methane; The δ13C1 of the natural gas is from -47.7 ‰ to -41.3 ‰; δ13C2 is from -29.8 ‰ to -29.0 ‰; δ13C3 is from -25.8 ‰ to -21.9 ‰. Based on the composition and characteristics of isotopic composition, it shows that natural gas is oil-associated gas. The gas source analysis results show that the natural gas in Well Zhaodi 1 is mainly sourced from the pyrolysis of source rocks of the Baiguowan Formation, a mixture gas reservoir with the same source and different maturity. The basic geological conditions of the oil and gas in the Xichang Basin have many similarities with the western Sichuan Depression, with good comparability and great natural gas resource potential.

Key words: Gas source, Genetic type, Baiguowan Formation, Well Zhaodi 1, Xichang BasinFoundation items:The Shale Gas Resources Investigation and Evaluation Project of Sichuan Province, China (Grant No. DK-2017-F-008), The Science and Technology Project of Sichuan Province, China(Grant No. 2018JY0625).

中图分类号: 

  • TE122.1+13

图1

西昌盆地构造特征与生储盖组合(a) 西昌盆地构造特征 (b) 西昌盆地生储盖组合"

图2

昭觉凹陷构造特征与昭地1井白果湾组岩性剖面"

图3

西昌盆地富有机质泥页岩厚度等值线"

表1

昭地1井天然气组分和同位素特征"

样号

取样

深度/m

含量/%

干燥

系数

δ13C/‰(VPDB)RO/%(C1/C2(N2/C2(N2/C3(δ13C2— δ13C1)/‰
CH4C2H6C3H8C4H10N2CO2CH4C2H6C3H8
1774.8097.540.580.260.020.381.300.991-48.740.39168.170.651.46
2778.8797.610.870.140.010.830.540.990-47.610.45112.200.955.92
3781.6496.890.770.120.020.781.420.991-48.640.39125.831.016.50
4784.1098.110.210.040.010.700.930.997-47.440.47467.193.3317.50
5785.1097.260.540.140.010.971.080.993-48.30.41180.111.796.92
6787.2795.980.670.390.021.121.820.989-47.640.45143.251.672.87
7788.7195.780.870.240.031.231.850.988-48.350.41110.091.415.12
8795.7096.560.640.340.020.841.600.990-42.240.99150.881.312.47
9806.9796.690.480.110.011.561.150.994-44.810.68201.443.2514.18
10811.0897.560.550.270.010.760.850.992-44.570.71177.381.382.81
11820.4394.560.890.370.021.123.040.987-41.251.15106.251.253.02
12823.3592.542.381.560.121.262.140.958-43.16-29.77-21.910.8738.880.520.8013.39
13826.5588.673.582.331.171.652.600.926-44.04-29.660.7624.770.460.7014.38
14832.9094.871.330.741.051.450.560.968-42.36-28.960.9871.331.091.9513.40
15833.7981.548.784.540.151.563.430.858-43.03-29.780.899.290.170.3413.25
16844.0082.687.366.650.501.341.470.851-41.9-29.65-25.811.0411.230.180.2012.25

图4

δ13C1—C1/C1—C4关系示意"

图5

各种成因甲烷的δ13C1—C1/C2+3鉴别图"

图6

有机成因烷烃气δ13C1—δ13C2—δ13C3鉴别图"

图7

依据碳同位素鉴别天然气是否为煤型气"

图8

Ln(C1/C2)与Ln(C2/C3)变化关系特征"

图9

天然气组分成因类型判别图"

表2

西昌盆地与川西坳陷天然气地质特征对比[30-42]"

构造单元特征西昌盆地川西坳陷
面积/km216 00031 000
大地构造背景青藏高原东南缘龙门山—盐源构造带东侧,扬子板块西缘青藏高原东缘龙门山前陆地带,扬子板块西北缘
基底性质复杂褶皱基底—结晶基底结晶基底
盆地性质前陆盆地前陆盆地
边界性质安宁河断裂(西)、峨边—美姑断裂(东)、则木河断裂(南)彭—灌大断裂(西);峨眉—荥经断裂(南)
构造展布行迹近南北向构造为主北东向、近东西向和近南北向3组
平面分带性无明显分带性,以低缓断褶构造为主三段:龙门山前缘扩展变形带;川西北低平褶皱区;川西南低缓断褶区
垂向分层特征上下结构基本一致,无明显分层特征上、下2个构造层:由不整合面分隔的不同变形层和滑脱层分隔的不同变形现象
主断裂性质逆冲逆冲
构造演化前陆盆地形成阶段(晚三叠世—早侏罗世);盆地形成和发展阶段(中侏罗世—早白垩世)盆地萎缩阶段(晚白垩世—古近纪);盆地改造阶段(新近纪—至今)前陆盆地形成阶段(须一期—须三期);前陆盆地形成和发展阶段(须四期—中侏罗世);盆地萎缩阶段(晚侏罗世—白垩纪)盆地改造阶段(古近纪—至今)
主变形期及应力特征燕山—喜马拉雅期以挤压为主燕山—喜马拉雅期以挤压为主
圈闭样式构造、构造—岩性和岩性圈闭3类构造、构造—岩性和岩性圈闭3类
烃源岩层段白果湾组二段和三段须家河组一段、三段和五段
发育时代晚三叠世诺利阶晚期—瑞替阶晚三叠世卡尼阶—诺利阶中期(须一段—须三段);诺利阶晚期—瑞替阶(须四段—须六段)
干酪根类型II型为主,少量III型III为主,少量II2
成熟度(RO)/%0.5~2.51.3~3.1
总有机碳含量(TOC)/%1.0~1.70.25~6.5
烃源岩厚度/m20~400200~1 000
生烃强度/(108 m3/km256.74~97.705~200
生储盖组合

下组合:白二段—白三段泥质岩为烃源岩层和盖层、白一段砂岩为储集层;

上组合:白二段—白三段泥质岩为烃源岩层和底板、白三段—四段砂岩为储集层,侏罗系泥质岩为盖层

“三明治”式:须一段、须三段和须五段泥质岩为烃源岩层和盖层;须二段、须四段和须六段砂岩为储集层
孔隙度/%1.86~15.8须二段:0.44%~16.38%;须四段:0.33%~12.71%
储集空间原生粒间孔、粒内溶孔原生粒间孔、粒内溶孔
典型气藏昭地1井(白一段、三段和四段)新场(须二段、须四段)、平落坝(须二段、须四段)等
天然气成因及类型原油二次裂解为主;油型气干酪根初次裂解和原油二次裂解;以煤型气为主,次为油型气
气藏压力类型常压气藏(昭地1井压力系数1.07)常压—超压气藏
预测资源量/(108 m3)12 18513 803~17 254
1 周名魁,刘俨然.西昌—滇中地区地质构造特征及地史演化[M].重庆:重庆出版社,1986:1-266.
ZHOU M K, LIU Y R. The Geological Tectonic Characteristics and Evolution in Xichang-Mid-Yunnan[M]. Chongqing: Chongqing Press, 1986:1-266.
2 王汝植,徐星琪,赵裕亭,等.西昌—滇中地区沉积盖层及其地史演化[M].重庆:重庆出版社,1988:89:196-197.
WANG R Z, XIU X Q,ZHAO Y T, et al. The Covering Strata and Geohistoric Evolution in Xichang-Central Yunnan [M]. Chongqing : Chongqing Press, 1988:89:196-197.
3 刘丽华,徐强,范明祥.西昌盆地构造特征和含油气条件分析[J].天然气工业,2003, 23(5):34-38.
LIU L H, XU J, FAN M X. Structural features and oil-gas bearing conditions in Xichang Basin[J]. Natural Gas Industry, 2003, 23(5): 34-38.
4 王东良,马成华,李剑,等.取样装置对天然气碳同位素检测结果的影响[J].天然气地球科学,2010, 21(2):345-349.
WANG D L, MA C H, LI J, et al. The effect of gas sampler on carbon stable isotope value of natural gas[J]. Natural Gas Geoscience, 2010, 21(2): 345-349.
5 孟强,王晓锋,王香增,等.页岩气解析过程中烷烃碳同位素组成变化及其地质意义——以鄂尔多斯盆地伊陕斜坡东南部长7页岩为例[J].天然气地球科学,2015, 26(2):333-340.
MENG J, WANG X F, WANG X Z, et al. Variation of carbon isotopic composition of alkanes during the shale gas desorption process and its geological significance: A case study of Chang7 shale of Yanchang Formation in Yishan Slope southeast of Ordos Basin[J].Natural Gas Geoscience,2015,26(2): 333-340.
6 孟强,王晓锋,吴小斌.页岩的气体解析特征及地球化学认识——以鄂尔多斯盆地中南部长7段页岩为例[J].中国矿业大学学报,2017, 46(3):554-562.
MENG Q, WANG X F, WU X B. Desorption analysis of shale and its geochemical characteristrics: A case study of the Chang 7 Member shale in thecentral south Ordos Basin[J]. Journal of China University of Mining & Technology, 2017, 46(3): 554-562.
7 黄籍中.油气区天然气成因分类及其在四川盆地的应用[J].天然气地球科学,1991, 2(1): 6-15.
HUANG J Z. Genetic classification of oil and gas areas and its application in Sichuan Basin[J].Natural Gas Geoscience,1991, 2(1): 6-15.
8 戴金星.各类烷烃气的鉴别[J].中国科学:B辑,化学,生命,科学,地学,1992, 22(2):185-193.
DAI J X. Identification of various types of alkanes[J]. Science China Press: Series B,Chemistry,Life Sciences,Geosciences, 1992, 22(2): 185-193.
9 戴金星.天然气碳氢同位素特征和各类天然气鉴别[J].天然气地球科学,1993, 4(2-3):1-40.
DAI J X. Hydrocarbon isotope characteristics of natural gas and identification of various types of natural gas[J]. Natural Gas Geoscience, 1993, 4(2-3): 1-40.
10 戴金星.天然气中烷烃气碳同位素研究的意义[J].天然气工业,2011, 31(12):1-6,123.
DAI J X. Significance of carbon isotope study of alkanes in natural gas[J].Natural Gas Industry,2011,31(12):1-6,123.
11 韩中喜, 李剑, 垢艳侠,等. 甲、乙烷碳同位素用于判识天然气成因类型的讨论[J]. 天然气地球科学, 2016, 27(4):665-671.
HAN Z X, LI J, GOU Y X, et al. Discussion on the use of methane and ethane carbon isotope to identify natural gas genesis types[J].Natural Gas Geoscience,2016,27(4):665-671.
12 戴金星.从碳、氢同位素组成特征剖析柯克亚油气田的油气成因[J].石油勘探与开发,1989,16(6):18-23.
DAI J X. Analysis of hydrocarbon genesis in kekeya oil and gas fields from the characteristics of carbon and hydrogen isotopes[J].Petroleum Exploration and Development,1989,16(6): 18-23.
13 戴金星.各类天然气的成因鉴别[J].中国海上油气,1992,4(1):11-19.
DAI J X. Identification of the causes of various types of natural gas[J]. China Offshore Oil and Gas, 1992,4(1): 11-19.
14 戴金星,宋岩,程坤芳,等.中国含油气盆地有机烷烃气碳同位素特征[J].石油学报,1993, 14(2):23-31.
DAI J X, SONG Y, CHENG K F, et al. Carbon isotope characteristics of organic alkanes in petroliferous basins in China[J]. Acta Petrolei Sinica, 1993, 14(2): 23-31.
15 王香增.陆相页岩气[M].北京:石油工业出版社,2014:38,70.
WANG X Z. Lacustrine Shale Gas[M]. Beijing: Petroleum Industry Press, 2014:38,70.
16 蒋有录,查明.石油天然气地质与勘探(第2版)[M].北京:石油工业出版社,2016:70-71.
JANG Y L,ZHA M. Petroleum and Natural Gas Geology and exploration (Version 2)[M]. Beijing: Petroleum Industry Press, 2016:70-71.
17 汪生秀,焦伟伟,方光建,等.渝东南地区五峰组—龙马溪页岩气地球化学特征及其成因分析[J].海相油气地质,2017, 22(4):77-84.
WANG S X, JIAO W W, FANG G J, et al. Geochemical features and genesis of shale gas of Wufeng-Longmaxi Formation in southeastern Chongqing[J]. Marine Origin Petroleum Geology, 2017, 22(4): 77-84.
18 戴金星,戚厚发.我国煤成烃气的 δ13C—RO关系[J].科学通报,1989(34):690-692.
DAI J X, QI H F. δ13C-RO relationship of China's coal hydrocarbon gas[J]. Chinese Science Bulletin, 1989(34): 690-692.
19 侯读杰,张林晔.实用油气地球化学图鉴[M].北京:石油工业出版社,2003:108.
HOU D J,ZHANG L Y. Practical Geochemistry[M].Beijing: Petroleum Industry Press, 2013:108.
20 黄光辉,张敏,胡国艺,等.原油裂解气和干酪根裂解气的地球化学研究(Ⅱ)—原油裂解气和干酪根裂解气的区分方法[J].中国科学:D辑,地球科学,2008, 38(S2): 9-16.
HUANG G H, ZHANG M, HU G Y, et al. Geochemical study of crude oil cracked gas and kerogen cracked gas(Ⅱ):A method for differentiating crude oil cracked gas and Kerogen cracked gas[J]. Science China Press: Series D,Geosciences, 2008, 38(S2): 9-16.
21 马德文,邱楠生,许威,等.四川盆地原油裂解气的有利地温场分布及其演化特征[J].地球科学与环境学报,2012, 34(2):49-56.
MA D W, QIU N S, XU W, et al. Distribution and evolution characteristic of favorable geothermal field for oil cracking gas in Sichuan Basin[J]. Journal of Earth Sciences and Environment, 2012, 34(2): 49-56.
22 武昱东,王宗起,罗金海,等.川西南甘洛地区中—新生代构造沉降史分析及对铅锌保存的约束[J].地质学报,2015, 89(8):9-16.
WU Y D, WANG Z Q, LUO J H, et al. Characteristics of Meso-Cenozic tectonic subsidence history and restriction on preservation of Zn-Pb deposit in Ganluo,Southwest Sichuan[J]. Acta Geologica Sinica, 2015, 89(8): 9-16.
23 戴金星.天然气碳氢同位素特征和各类天然气鉴别[J].天然气地球科学,1993,4(s1):1-40.
DAI J X. Hydrocarbon isotopic characteristics of natural gas and dentification of various natural gas[J]. Natural Gas Geoscience, 1993,4(s1): 1-40.
24 金强,程付启,刘文汇.混源气藏及混源比例研究[J].天然气工业,2004,15(2):22-24,3.
JIN J, CHENG F Q, LIU W H. Study on source-mixed gas reservoirs and source-mixed ratios[J]. Natural Gas Industry, 2004,15(2): 22-24,3.
25 史基安,卢龙飞,王金鹏,等.天然气运移物理模拟实验及其结果[J].天然气工业,2004, 24(12): 32-34,184.
SHI J A, LU L F, WANG J P, et al. Physical modeling tests and results of natural gas migration[J]. Natural Gas Industry, 2004, 24(12): 32-34,184.
26 史基安,孙秀建,王金鹏,等.天然气运移物理模拟实验及其组分分异与碳同位素分馏特征[J].石油实验地质,2005, 27(3):293-298.
SHI J A, SUN X J, WANG J P, et al. Physical simulating experiment of natural gas migration and its characteristics of composition differentiation and carbon isotope fractionation[J]. Petroleum Geology & Experiment, 2005, 27(3): 293-298.
27 曾庆辉.混源气的组分与碳同位素特征研究[J].石油天然气学报,2010, 32(6): 1-5,526.
ZENG Q H. Investigation on chemical compositions and carbon isotope of mixed gases from different sources[J]. Journal of Oil and Gas Technology, 2010, 32(6): 1-5,526.
28 孙健,程鹏,盖海峰.同源不同成熟度天然气的混合对天然气碳同位素的影响[J].地球化学,2018, 47( 4):354-362.
SUN J, CHENG P, GAI H F. Effectw of mixing of gas generated from the same source rock with different maturities on its carbon istopic characteristics[J]. Geochimica, 2018, 47(4): 354-362.
29 陈建平,王绪龙,倪云燕,等.准噶尔盆地南缘天然气成因类型与气源[J].石油勘探与开发,2019, 46(3):461-473.
CHEN J P, WANG X L, NI Y Y, et al. Genetic type and source of natural gas in the southern margin of Junggar Basin, NW China[J].Petroleum Exploration and Development, 2019, 46(3): 461-473.
30 王运生,李云岗.西昌盆地的形成与演化[J].成都理工学院学报,1996, 23(1): 85-90.
WANG Y S, LI Y G. Formation and evolution of Xichang Basin[J]. Journal of Chengdu University of Technology, 1996, 23(1): 85-90.
31 黄泽光,贾存善,徐宏节.川西坳陷与库车坳陷变形特征的对比分析[J].成都理工大学学报:自然科学版,2003, 30(5):511-517.
HUANG Z G, JIA C S, XU H J. Correlation of the structural deformation features between Kuche Depression in Tarim Basin and west Sichuan Depression in Sichuan Basin[J]. Journal of Chengdu University of Technology: Science & Technology Edition, 2003, 30(5): 511-517.
32 陈长云,何宏林.大凉山地区新生代地壳缩短及其构造意义[J].地震地质,2008, 30(2):443-453.
CHEN C Y, HE H L. Crust shortening of Daliangshan tectonic zone in Cenozoic era and its implication[J]. Seismology and Geology, 2008, 30(2): 443-453.
33 李智武,刘树根,林杰,等.川西坳陷构造格局及其成因机制[J].成都理工大学学报:自然科学版,2009, 36(6):645-653.
LI Z W, LIU S G, LIN J, et al. Structural configuration and its genetic mechanism of the west Sichuan Depression in China[J]. Journal of Chengdu University of Technology:Science & Technology Edition, 2009, 36(6): 645-653.
34 李忠权,应丹琳,李洪奎,等.川西盆地演化及盆地叠合特征研究[J].岩石学报,2011, 27(8):2362-2370.
LI Z Q, YING D L, LI H K, et al. Evolution of the western Sichuan Basin and its superimposed characteristics, China[J]. Acta Petrologica Sinica, 2011, 27(8): 2362-2370.
35 连丽霞,尹太举,王磊,等.晚三叠世川西前陆盆地形成及沉积充填[J].石油天然气学报,2011,33(3):12-17,164.
LIAN L X, YIN T J, WANG L, et al. Formation and sedimentary fill in go flate Triassic western Sichuan Foreland Basin[J]. Journal of Oil and Gas Technology,2011,33(3): 12-17,164.
36 伏明珠,覃建雄.四川西昌盆地沉积演化史研究[J].四川地质学报,2011, 31(1):1-5.
FU M Z, QIN J X. Study of sedimentary evolution of the Xichang Basin[J]. Acta Geologica Sichuan, 2011, 31(1): 1-5.
37 裴森奇,李跃纲,张本健,等.川西地区上三叠统天然气成藏主控因素及勘探方向[J].天然气工业,2012, 32(10):6-9, 13.
PEI S J, LI Y G, ZHANG B J, et al. Major controlling factors of gas pooling and exploration directions in the Upper Triassic in the western Sichuan Basin[J]. Natural Gas Industry, 2012, 32(10): 6-9, 13.
38 仝亚博,杨振宇,张旭东,等.青藏高原东南缘晚新生代川滇地体旋扭构造体系地壳变形特征的古地磁学分析[J].地质学报,2014, 88(11):2057-2070.
TONG Y B, YANG Z Y, ZHANG X D, et al. The paleomagneitc analysis about the later Cenozoic crustal deformation characteristics of the Chuandian terrane clockwise rotation system in the southeast edge of Tibet Plateau[J]. Acta Geologica Sinica, 2014, 88(11): 2057-2070.
39 郑定业,庞雄奇,张可,等.四川盆地上三叠系须家河组油气资源评价[J].特种油气藏,2017, 24(4):67-72.
ZHENG D Y, PANG X J, ZHANG K, et al. Oil & gas resource evaluation for Xujiahe Formation in Upper Triassic series in Sichuan Basin[J]. Special Oil & Gas Reservoirs, 2017, 24(4): 67-72.
40 杨映涛,李旻,张庄,等.叠覆型致密砂岩气区形成条件[J].天然气工业,2019,39(S1):30-35.
YANG Y T, LI M, ZHANG Z, et al. Formation conditions of gas zone in superimposed tight sandstone[J]. Natural Gas Industry, 2019,39(S1):30-35.
41 张世华,田军,叶素娟,等.川西坳陷新场构造带须二段气藏成藏过程[J].天然气工业,2019, 39(S1):17-22.
ZHANG S H, TIAN J, YE S J, et al. Gas reservoir forming process of the second member of Xu Formation in Xinchang structural belt, western Sichuan Depression[J]. Natural Gas Industry, 2019, 39(S1): 17-22.
42 朱宏权,张庄,南红丽,等.叠覆型致密砂岩气区成藏富集规律与勘探实践[J].天然气工业,2019, 39(S1):9-16.
ZHU H Q, ZHANG Z, NAN H L, et al. Accumulation regularity and exploration practice of gas accumulation in overlapping tight sandstone fas area[J].Natural Gas Industry, 2019, 39(S1): 9-16.
[1] 张静非, 赵继展, 陈冬冬, 李树刚, 林海飞. 鄂尔多斯盆地彬长矿区含H2S煤层沉积环境特征及成因分析[J]. 天然气地球科学, 2020, 31(1): 100-109.
[2] 吕文雅, 曾联波, 周思宾, 吉园园, 梁丰, 惠晨, 尉加盛. 鄂尔多斯盆地西南部致密砂岩储层微观裂缝特征及控制因素[J]. 天然气地球科学, 2020, 31(1): 37-46.
[3] 赵长毅, 李永新, 王居峰, 刘海涛, 邓焱, 赵博雅. 渤海湾盆地天然气成因类型与勘探潜力分析[J]. 天然气地球科学, 2019, 30(6): 783-789.
[4] 孔庆芬 , 张文正, 李剑锋, 昝川莉, . 鄂尔多斯盆地奥陶系盐下天然气地球化学特征及成因[J]. 天然气地球科学, 2019, 30(3): 423-432.
[5] 孙奕婷,田兴旺,马奎,彭瀚霖,戴鸿鸣,汪华,张玺华,陈聪. 川西北地区双鱼石气藏中二叠统天然气碳氢同位素特征及气源探讨[J]. 天然气地球科学, 2019, 30(10): 1477-1486.
[6] 裴立新, 刚文哲, 朱传真, 刘亚洲, 何文军, 向宝力, 董岩. 准噶尔盆地烷烃气碳同位素组成及来源[J]. 天然气地球科学, 2018, 29(7): 1020-1030.
[7] 邓焱, 胡国艺, 赵长毅. 四川盆地龙岗气田长兴组—飞仙关组天然气地球化学特征及成因[J]. 天然气地球科学, 2018, 29(6): 892-907.
[8] 蔡春芳. 有机硫同位素组成应用于油气来源和演化研究进展[J]. 天然气地球科学, 2018, 29(2): 159-167.
[9] 高文杰,李贤庆,张光武,魏强,张吉振,祁帅,陈金明. 塔里木盆地库车坳陷克拉苏构造带深层致密砂岩气藏储层致密化与成藏关系[J]. 天然气地球科学, 2018, 29(2): 226-235.
[10] 杨海波, 王屿涛, 郭建辰, 何文军, 蓝文芳. 准噶尔盆地天然气地质条件、资源潜力及勘探方向[J]. 天然气地球科学, 2018, 29(10): 1518-1530.
[11] 郑瑞辉,刘杏,黄军平,张慧敏,赵双丰,张枝焕. 四川盆地通南巴构造带陆相层系气藏的气源与成藏期分析[J]. 天然气地球科学, 2017, 28(9): 1330-1340.
[12] 王权,操义军,刁帆,张金峰,郭柳汐,邹华耀. 渤海湾盆地廊固凹陷天然气成因类型及分布规律[J]. 天然气地球科学, 2017, 28(9): 1363-1374.
[13] 仵宗涛,刘兴旺,李孝甫,王晓锋,郑建京. 稀有气体同位素在四川盆地元坝气藏气源对比中的应用[J]. 天然气地球科学, 2017, 28(7): 1072-1077.
[14] 翟俪娜,倪云燕,吴朝东,高金亮. 川中地区须家河组天然气地球化学特征[J]. 天然气地球科学, 2017, 28(4): 539-549.
[15] 朱心健,陈践发,贺礼文,王艺繁,张威,张宝收,张科. 塔里木盆地麦盖提斜坡罗斯2井油气地球化学特征及油气源分析[J]. 天然气地球科学, 2017, 28(4): 566-574.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 伍藏原;李汝勇;张明益;张明亮;翟姝玲;罗敏;. 微地震监测气驱前缘技术在牙哈凝析气田的应用[J]. 天然气地球科学, 2005, 16(3): 390 -393 .
[2] 王万春,刘文汇, 刘全有. 浅层混源天然气判识的碳同位素地球化学分析[J]. 天然气地球科学, 2003, 14(6): 469 -473 .
[3] 江厚顺,白彦华,冉建立 . 水平井产能预测及射孔参数优选系统研究[J]. 天然气地球科学, 2007, 18(6): 891 -893 .
[4] 刘建锋 彭军 周康 殷孝梅 唐勇 刘金库. 川中—川南过渡带须家河组二段高分辨率层序地层学研究[J]. 天然气地球科学, 2009, 20(2): 199 -203 .
[5] 郭振华, 赵彦超. 大牛地气田盒2段致密砂岩气层测井评价[J]. 天然气地球科学, 2010, 21(1): 87 -94 .
[6] 王明艳, 郭建华, 旷理雄, 朱锐. 湘中坳陷涟源凹陷烃源岩油气地球化学特征[J]. 天然气地球科学, 2010, 21(5): 721 -726 .
[7] 宋琦, 王树立, 陈燕, 郑志, 谢磊. 天然气水合物新型动力学模型与实验研究[J]. 天然气地球科学, 2010, 21(5): 868 -874 .
[8] 赵靖舟. 非常规油气有关概念、分类及资源潜力[J]. 天然气地球科学, 2012, 23(3): 393 -406 .
[9] 吉利明, 罗鹏. 样品粒度对黏土矿物甲烷吸附容量测定的影响[J]. 天然气地球科学, 2012, 23(3): 535 -540 .
[10] 游利军,李雷,康毅力,石玉江,张海涛,杨小明. 考虑有效应力与含水饱和度的致密砂岩气层供气能力[J]. 天然气地球科学, 2012, 23(4): 764 -769 .