天然气地球科学 ›› 2020, Vol. 31 ›› Issue (10): 1489–1500.doi: 10.11764/j.issn.1672-1926.2020.04.029

• 非常规天然气 • 上一篇    下一篇

鄂尔多斯盆地延长组7段页岩油储层储集性特征

梁晓伟1,2(),关梓轩3(),牛小兵1,2,关平3,淡卫东1,2,冯胜斌1,2,尤源1,2,周树勋1,2   

  1. 1.中国石油长庆油田分公司勘探开发研究院,陕西 西安 710018
    2.低渗透油气田勘探开发国家工程实验室,陕西 西安 710018
    3.北京大学造山带与地壳演化教育部重点实验室,北京 100871
  • 收稿日期:2019-10-16 修回日期:2020-04-13 出版日期:2020-10-10 发布日期:2020-09-30
  • 通讯作者: 关梓轩 E-mail:liangxw_cq@petrochina.com.cn;guanzixuan2016@pku.edu.cn
  • 作者简介:梁晓伟(1978-),男,陕西咸阳人,高级工程师,硕士,主要从事石油地质勘探研究.E-mail:liangxw_cq@petrochina.com.cn.
  • 基金资助:
    国家科技重大专项课题“鄂尔多斯盆地致密油资源潜力、甜点预测与关键技术应用”(2016ZX05046005);中国石油重大科技专项课题“鄂尔多斯盆地石油富集规律及勘探目标评价”(2016E-0501)

Reservoir characteristics of shale oil in Chang 7 Member of Yanchang Formation,Ordos Basin

Xiao-wei LIANG1,2(),Zi-xuan GUAN3(),Xiao-bing NIU1,2,Ping GUAN3,Wei-dong DAN1,2,Sheng-bin FENG1,2,Yuan YOU1,2,Shu-xun ZHOU1,2   

  1. 1.Research Institute of exploration and development,PetroChina Changqing Oilfield Company,Xi'an 710018,China
    2.State Engineering Laboratory of exploration and development of Low Permeability Oil and Gas Fields,Xi'an 710018,China
    3.Key Laboratory of Ministry of Education of Orogenic Belt and Crustal Evolution,Peking University,Beijing 100871,China
  • Received:2019-10-16 Revised:2020-04-13 Online:2020-10-10 Published:2020-09-30
  • Contact: Zi-xuan GUAN E-mail:liangxw_cq@petrochina.com.cn;guanzixuan2016@pku.edu.cn
  • Supported by:
    The Major Science and Technology Project of CNPC (Grant No. 2016E-0203).

摘要:

目前学术界对页岩油的概念和分类还存在争议,其根源就是对其有效储层的岩性存在分歧,有人认为储层是纯泥页岩,有人则认为是泥页岩系内的砂岩—粉砂岩夹层。存在争论的原因是对泥页岩储层的储集性和可动性存在质疑,因为传统上认为这些细粒岩性不具有储集空间,或即使有少量储集空间流体也不可动用。因此,弄清楚页岩油有效储层的岩性、对其储集空间深刻认识和精细刻画、研究页岩油储层的油气可动性及其下限都是目前业内亟待解决的重要问题。在鄂尔多斯盆地耿295井的长7段获得工业油流以后,为开展这方面研究提供了一个实际案例。利用低温吸附、高压压汞、CT扫描以及核磁共振等较为先进的研究手段,对鄂尔多斯盆地7段储层样品的岩性、物性、孔隙结构与形貌以及流体可动性进行了系统的研究,明确了该区长7段属于含有少量砂岩的页岩层系;尽管泥页岩的孔隙度和孔径都非常微小,但也具备一定的储集性和流体可动性;其流体可动性主要依赖于孔隙结构,而孔隙度对其影响较小。这为深入认识页岩油储层提供了依据,并对鄂尔多斯盆地页岩油资源的勘探开发打下了理论基础。

关键词: 页岩油, 鄂尔多斯盆地, 长7段, 储集性, 流体可动性

Abstract:

There are still some arguments on the concept and classification of shale oil in academic circles, the root of which is that there are differences in the lithology of its effective reservoir. Some people think that the reservoir is pure shale. Others think that it is the sandstone siltstone interbedded in the shale system. The reason for the controversy is that there is doubt about the reservoir and mobility of the shale reservoir because these fine-grained rocks are traditionally considered to have no reservoir space. Even if there are some small amounts of reservoir space, fluid can not use it. Therefore, it is an important problem to find out the lithology of effective shale oil reservoir, to have a deep understanding of its reservoir space, to study the mobility and lower limit of shale oil reservoir. After the industrial oil flow was obtained in the Chang 7 Member of Well Geng295 in a practical case of this research is provided for us. In this paper, the lithology, physical properties, pore structure, morphology, and fluid mobility of Chang 7 reservoir samples in Ordos Basin are systematically studied by using advanced research methods such as low-temperature adsorption, high-pressure mercury injection, CT scanning, and nuclear magnetic resonance. It is clear that the Chang 7 reservoir in Ordos Basin belongs to shale series with a small amount of sandstone. Although the porosity and pore diameter of shale is very small, it also has a certain reservoir and fluid mobility, and its fluid mobility mainly depends on pore structure, while porosity has little influence on it. This provides a basis for further understanding of the shale oil reservoir and lays a theoretical foundation for the exploration and development of shale oil resources in Ordos Basin.

Key words: Shale oil, Ordos Basin, Chang 7 Member, Reservoir, Fluid mobility

中图分类号: 

  • TE132.1+4

图1

长7段3种主要岩性的陆源碎屑矿物平均含量"

图2

长7段3种主要岩性中各黏土矿物平均含量"

表1

长7段页岩油储层样品物性"

样品号深度/m岩性孔隙度/%

渗透率

/(10-3 μm2)

吸附回线类型可动流体饱和度/%束缚水饱和度/%
庄233-101 789.8褐灰色油斑极细砂岩9.5660.003 3281//
白522-021 946.80油斑粉砂岩6.8490.004 3672//
里211-012 371.80灰黄色油迹粉砂岩3.270.000 1492//
庄233-151 776.11灰色泥质粉砂岩1.9340.005 5852//
庄233-181 749.95灰色泥质粉砂岩1.8090.001 134 6237.1162.89
盐56-023 001.00浅灰色泥质粉砂岩2.180.000 418 72//
庄233-171 756.65灰色泥质粉砂岩2.4470.012 883 52//
庄233-121 784.75灰色粉砂质泥岩0.8510.002 1592//
庄233-091 796.30灰黑色泥岩2.9260.000 652127.2572.75
白522-011 959.50褐灰色粉砂质泥岩0.860.000 172144.5455.46

图3

长7段油页岩储层孔渗相关关系"

图4

孔隙相关参数与黏土矿物含量相关关系"

图5

长7段油页岩储层吸附回线类型(a)庄233井,1 796.30 m,灰黑色泥岩,长73亚段;(b)庄233井,1 749.95 m,灰色泥质粉砂岩,长71亚段"

图6

孔隙喉道柱状频率直方分布图(a)庄233-18井,1 796.30 m,灰黑色泥岩,长73亚段;(b)白522-01井,1 959.50 m,褐灰色粉砂质泥岩,长7段;(c)庄233-09井,1 749.95 m,灰色泥质粉砂岩,长71亚段"

图7

长7段油页岩储层孔隙形貌(a) 白522井,1 960.31 m,长7段,黏土矿物中的晶间孔;(b)里211井,2 371.8 m,长7段,粉砂岩中的裂缝;(c)庄233井,1 796.30 m,长73亚段,黏土矿物中的晶间孔;(d)庄233井,1 784.75 m,长72亚段,黏土矿物中的晶间孔;(e)里211井,2 371.8 m,长7段,草莓状黄铁矿中的晶间孔;(f)白522井,1 960.31 m,长7段,草莓状黄铁矿中的晶间孔;(g)庄233井,1 785.8 m,长73亚段,草莓状黄铁矿中的晶间孔;(h)庄233井,1 749.95 m,长71亚段,石英颗粒溶蚀孔;(i)白522井,1 948.04 m,长7,长石颗粒中的粒内孔"

图8

核磁共振T2弛豫时间谱(a)白522井,1 959.50 m,长7段,褐灰色粉砂质泥岩;(b)庄233井,1 749.95 m,长71亚段,灰色泥质粉砂岩;(c)庄233井,1 796.30 m,长73亚段,灰黑色泥岩"

表2

中国石油孔隙结构分级参考标准"

中石油孔隙结构分级参考标准
大孔中孔小孔细孔微孔
>80 μm80~50 μm50~10 μm10~0.5 μm<0.5 μm

表3

长7段页岩油储层样品孔隙与可动性参数"

样品号深度/m岩性孔隙度/%微孔+细孔在孔隙中的占比/%峰值T2弛豫时间/ms可动流体饱和度/%束缚水饱和度/%
白522-011 959.5褐灰色粉砂质泥岩0.8658.8455.4664.335.7
庄233-181 749.95灰色泥质粉砂岩1.80976.5162.8961.438.6
庄233-091 796.3灰黑色泥岩2.92677.9472.7557.942.1

图9

峰值T2弛豫时间和束缚水饱和度等与孔隙度关系特征"

1 邹才能,陶士振,侯连华,等. 非常规油气地质学[M]. 北京:地质出版社,2014:30,42-44.
ZOU C N, TAO S Z, HOU L H, et al. Unconventional Petroleum Geology[M]. Beijing:Geological Publishing House,2014:30,42-44.
2 EIA. Technically Recoverable Shale Oil and Shale Gas Resources: An Assessment of 137 Shale Formations in 41 Countries Outside the United States[R]. Washington DC: U.S. Department of Energy, 2013.
3 U.S. Energy Information Administration. Annual Energy Outlook 2017[R]. Washington DC: U.S. Energy Information Administration, 2017.
4 EIA.Weekly petroleum status report[EB/OL].(2019-02). .
5 张君峰,毕海滨,许浩,等. 国外致密油勘探开发新进展及借鉴意义[J]. 石油学报,2015,36(2):127-137.
ZHANG J F,BI H B,XU H,et al. New progress and reference significance of overseas tight oil exploration and development [J]. Acta Petrolei Sinica,2015,36(2):127-137.
6 李世臻,刘卫彬,王丹丹,等. 中美陆相页岩油地质条件对比[J]. 地质论评,2017,63(S1):39-40.
LI S Z,LIU W B,WANG D D,et al. Continental shale oil geological conditions of China and the United States [J]. Geological Review,2017,63(S1):39-40.
7 黎茂稳,孙川翔,张海霞. 我国陆相页岩油前景可期[J]. 中国石油石化,2017(20):38-39.
LI M W,SUN C X,ZHANG H X. Prospect of continental shale oil in China [J]. China Petrochem,2017(20):38-39.
8 武晓玲,高波,叶欣,等.中国东部断陷盆地页岩油成藏条件与勘探潜力[J]. 石油与天然气地质,2013,34(4):455-462.
WU X L,GAO B,YE X,et al. Shale oil accumulation conditions and exploration potential of faulted basins in the east of China [J]. Oil & Gas Geology,2013,34(4):455-462.
9 匡立春,唐勇,雷德文,等. 准噶尔盆地二叠系咸化湖相云质岩致密油形成条件与勘探潜力[J]. 石油勘探与开发,2012,39(6):657-667.
KUANG L C,TANG Y,LEI D W,et al. Formation conditions and exploration potential of tight oil in the Permian saline lacustrine dolomitic rock, Junggar Basin, NW China[J]. Petroleum Exploration and Development,2012,39(6):657-667.
10 支东明,唐勇,杨智峰,等. 准噶尔盆地吉木萨尔凹陷陆相页岩油地质特征与聚集机理[J]. 石油与天然气地质,2019,40(3):524-534.
ZHI D M,TANG Y,YANG Z F,et al. Geological characteristics and accumulation mechanism of continental shale oil in Jimusaer Sag, Junggar Basin[J]. Oil & Gas Geology,2019,40(3):524-534.
11 杨智,侯连华,林森虎,等. 吉木萨尔凹陷芦草沟组致密油、页岩油地质特征与勘探潜力[J]. 中国石油勘探,2018,23(4):76-85.
YANG Z,HOU L H,LIN S H,et al. Geologic characteristics and exploration potential of tight oil and shale oil in Lucaogou Formation in Jimsar Sag[J]. China Petroleum Exploration,2018,23(4):76-85.
12 李士超,张金友,公繁浩,等. 松辽盆地北部上白垩统青山口组泥岩特征及页岩油有利区优选[J]. 地质通报,2017,36(4):654-663.
LI S C,ZHANG J Y,GONG F H,et al. The characteristics of mudstones of Upper Cretaceous Qingshankou Formation and favorable area optimization of shale oil in the north of Songliao Basin[J]. Geological Bulletin of China,2017,36(4):654-663.
13 柳波,吕延防,冉清昌,等. 松辽盆地北部青山口组页岩油形成地质条件及勘探潜力[J].石油与天然气地质,2014,35(2):280-285.
LIU Q B,LÜ Y F,RAN Q C,et al. Geological conditions and exploration potential of shale oil in Qingshankou Formation, Northern Songliao Basin[J]. Oil & Gas Geology,2014,35(2):280-285.
14 周志,阎玉萍,任收麦,等. 松辽盆地页岩油勘探前景与对策建议[J]. 中国矿业,2017,26(3):171-174.
ZHOU Z,YAN Y P,REN S M,et al. Prospects and strategy for shale oil exploration in Songliao Basin, China[J]. China Mining Magazine,2017,26(3):171-174.
15 周立宏,蒲秀刚,肖敦清,等. 渤海湾盆地沧东凹陷孔二段页岩油形成条件及富集主控因素[J]. 天然气地球科学,2018,29(9):1323-1332.
ZHOU L H,PU X G,XIAO D Q,et al. Geological conditions for shale oil formation and the main controlling factors for the enrichment of the 2nd member of Kongdian Formation in the Cangdong Sag, Bohai Bay Basin[J]. Natural Gas Geoscience,2018,29(9):1323-1332.
16 赵贤正,周立宏,蒲秀刚,等. 陆相湖盆页岩层系基本地质特征与页岩油勘探突破——以渤海湾盆地沧东凹陷古近系孔店组二段一亚段为例[J]. 石油勘探与开发,2018,45(3):361-372.
ZHAO X Z,ZHOU L H,PU X G,et al. Geological characteristics of shale rock system and shale oil exploration breakthrough in a lacustrine basin: A case study from the Paleogene 1st sub-member of Kong 2 member in Cangdong Sag, Bohai Bay Basin, China[J]. Petroleum Exploration and Development,2018,45(3):361-372.
17 孙焕泉. 济阳坳陷页岩油勘探实践与认识[J]. 中国石油勘探,2017,22(4):1-14.
SUN H Q. Exploration practice and cognitions of shale oil in Jiyang Depression[J]. China Petroleum Exploration,2017,22(4):1-14.
18 宋明水. 济阳坳陷页岩油勘探实践与现状[J]. 油气地质与采收率,2019,26(1):1-12.
SONG M S. Practice and current status of shale oil exploration in Jiyang Depression [J]. Petroleum Geology and Recovery Efficiency,2019,26(1):1-12.
19 吴世强,唐小山,杜小娟,等. 江汉盆地潜江凹陷陆相页岩油地质特征[J]. 东华理工大学学报:自然科学版,2013,36(3):282-286.
WU S Q,TANG X S,DU X J,et al. Geologic characteristics of continental shale oil in the Qianjiang Depression, Jianghan Salt Lake Basin[J]. Journal of East China Institute of Technology:Natural Science,2013,36(3):282-286.
20 黄爱华,薛海涛,王民,等. 东濮凹陷沙三下亚段页岩油资源潜力评价[J]. 长江大学学报:自然科学版,2017,14(3):1-6.
HUANG A H,XUE H T,WANG M,et al. Evaluation of shale oil resource potential in lower Es3 of Dongpu Depression [J]. Journal of Yangtze University:Natural Science Edition,2017,14(3):1-6.
21 杨华,李士祥,刘显阳. 鄂尔多斯盆地致密油、页岩油特征及资源潜力[J]. 石油学报,2013,34(1):1-11.
YANG H,LI S X,LIU X Y. Characteristics and resource prospects of tight oil and shale oil in Ordos Basin [J]. Acta Petrolei Sinica,2013,34(1):1-11.
22 杨智,付金华,郭秋麟,等. 鄂尔多斯盆地三叠系延长组陆相致密油发现、特征及潜力[J]. 中国石油勘探,2017,22(6):9-15.
YANG Z,FU J H,GUO Q L,et al. Discovery, characteristics and resource potential of continental tight oil in Triassic Yanchang Formation, Ordos Basin [J]. China Petroleum Exploration,2017,22(6):9-15.
23 周庆凡,杨国丰. 致密油与页岩油的概念与应用[J]. 石油与天然气地质,2012,33(4):541-544.
ZHOU F Q,YANG G F. Definition and application of tight oil and shale oil terms [J]. Oil & Gas Geology,2012,33(4):541-544.
24 邹才能,朱如凯,白斌,等. 致密油与页岩油内涵、特征、潜力及挑战[J]. 矿物岩石地球化学通报,2015,34(1):3-17.
ZOU C N,ZHU R K,BAI B,et al. Significance,geologic characteristics,resource potential and future challenges of tight oil and shale oil[J]. Bulletin of Mineralogy,Petrology and Geochemistry,2015,34(1):3-17.
25 李建忠,郑民,陈晓明,等. 非常规油气内涵辨析、源—储组合类型及中国非常规油气发展潜力[J]. 石油学报,2015,36(5):521-532.
LI J Z,ZHENG M,CHEN X M,et al. Connotation analyses, source-reservoir assemblage types and development potential of unconventional hydrocarbon in China [J]. Acta Petrolei Sinica,2015,36(5):521-532.
26 张金川,林腊梅,李玉喜,等. 页岩油分类与评价[J]. 地学前缘,2012,19(5):322-331.
ZHANG J C,LIN L M,LI Y X,et al. Classification and evaluation of shale oil[J]. Earth Science Frontiers,2012,19(5):322-331.
27 邹才能,杨智,陶士振,等. 纳米油气与源储共生型油气聚集[J]. 石油勘探与开发,2012,39(1):13-26.
ZOU C N,YANG Z,TAO S Z,et al. Nano-hydrocarbon and the accumulation in coexisting source and reservoir[J]. Petroleum Exploration and Development,2012,39(1):13-26.
28 姜在兴,张文昭,梁超,等. 页岩油储层基本特征及评价要素[J]. 石油学报,2014,35(1):184-196.
JIANG Z X,ZHANG W Z,LIANG C,et al. Characteristics and evaluation elements of shale oil reservoir [J]. Acta Petrolei Sinica,2014,35(1):184-196.
29 杨智,侯连华,陶士振,等. 致密油与页岩油形成条件与“甜点区”评价[J]. 石油勘探与开发,2015,42(5):555-565.
YANG Z,HOU L H,TAO S Z,et al. Formation conditions and “sweet spot” evaluation of tight oil and shale oil [J]. Petroleum Exploration and Development,2015,42(5):555-565.
30 蒋启贵,黎茂稳,钱门辉,等. 不同赋存状态页岩油定量表征技术与应用研究[J]. 石油实验地质,2016,38(6):842-849.
JIANG Q G,LI M W,QIAN M H,et al. Quantitative characterization of shale oil in different occurrence states and its application [J]. Petroleum Geology & Experiment,2016,38(6):842-849.
31 柳波,何佳,吕延防,等. 页岩油资源评价指标与方法——以松辽盆地北部青山口组页岩油为例[J]. 中南大学学报:自然科学版,2014,45(11):3846-3852.
LIU B,HE J,LÜ Y F,et al. Parameters and method for shale oil assessment: Taking Qinshankou Formation shale oil of Northern Songliao Basin [J]. Journal of Central South University:Science and Technology,2014,45(11):3846-3852.
32 李吉君,史颖琳,章新文,等. 页岩油富集可采主控因素分析:以泌阳凹陷为例[J]. 地球科学,2014,39(7):848-857.
LI J J,SHI Y L,ZHANG X W,et al. Control factors of enrichment and producibility of shale oil:A case study of Biyang Depression [J]. Earth Science,2014,39(7):848-857.
33 胡素云,朱如凯,吴松涛,等. 中国陆相致密油效益勘探开发[J]. 石油勘探与开发,2018,45(4):737-748.
HU S Y,ZHU R K,WU S T,et al. Profitable exploration and development of continental tight oil in China [J]. Petroleum Exploration and Development,2018,45(4):737-748.
34 金之钧,白振瑞,高波,等. 中国迎来页岩油气革命了吗?[J]. 石油与天然气地质,2019,40(3):451-458.
JIN Z J,BAI Z R,GAO B,et al. Has China ushered in the shale oil and gas revolution?[J]. Oil & Gas Geology,2019,40(3):451-458.
35 付茜. 中国页岩油勘探开发现状、挑战及前景[J]. 石油钻采工艺,2015,37(4):58-62.
FU Q. The status, challenge and prospect of shale oil exploration and development in China[J]. Oil Drilling & Production Technology,2015,37(4):58-62.
36 盛湘,陈祥,章新文,等. 中国陆相页岩油开发前景与挑战[J]. 石油实验地质,2015,37(3):267-271.
SHENG X,CHEN X,ZHANG X W,et al. Prospects and challenges of continental shale oil development in China[J]. Petroleum Geology & Experiment,2015,37(3):267-271.
37 邹才能,杨智,崔景伟,等. 页岩油形成机制、地质特征及发展对策[J]. 石油勘探与开发,2013,40(1):14-26.
ZOU C N,YANG Z,CUI J W,et al. Formation mechanism,geological characteristics and development strategy of nonmarine shale oil in China[J]. Petroleum Exploration and Development,2013,40(1):14-26.
38 邹才能,杨智,王红岩,等. “进源找油”:论四川盆地非常规陆相大型页岩油气田[J].地质学报,2019,93(7):1-13.
ZOU C N,YANG Z,WANG H Y,et al. “Exploring petroleum inside source kitchen”:Jurassic unconventional continental giant shale oil &gas field in Sichuan Basin, China[J]. Acta Geologica Sinica,2019,93(7):1-13.
39 鲍芳,刘伟新. 中国石化无锡石油地质研究所实验地质技术之氩离子抛光分析技术[J]. 石油实验地质,2014,36(4):388.
BAO F,LIU W X. Argon ion polishing analysis technology of experimental geological technology in Wuxi institute of petroleum geology, Sinopec[J]. Petroleum Geology & Experiment,2014,36(4):388.
40 陈萍,唐修义. 低温氮吸附法与煤中微孔隙特征的研究[J]. 煤炭学报,2001,26(5):552-556.
CHEN P,TANG X Y. The research on the adsorption of nitrogen in low temperature and micro-pore properties in coal[J]. Journal of China Coal Society,2001,26(5):552-556.
41 高小跃. 塔里木盆地侏罗系泥页岩含气机理及富气特征[D]. 北京:中国石油大学,2013:20-26.
GAO X Y. Gas Bearing Mechanism and Gas Rich Characteristics of Jurassic Shale in Tarim Basin[D]. Beijing: China University of Petroleum,2013:20-26.
42 刘辉,吴少华,姜秀民,等. 快速热解褐煤焦的低温氮吸附等温线形态分析[J]. 煤炭学报, 2005,30(4):507-510.
LIU H,WU S H,JIANG X M,et al. The configuration analysis of the adsorption isotherm of nitrogen in low temperature with the lignite char produced under fast pyrolysis[J]. Journal of China Coal Society,2005,30(4):507-510.
43 马文国,刘傲雄. CT扫描技术对岩石孔隙结构的研究[J]. 中外能源,2011,07:54-56.
MA W G,LIU A X. The study of the pore structure parameters in rocks by CT scanning technology[J]. Sino-Global Energy,2011,07:54-56.
44 沈平平.油水在多孔介质中的运动理论和实践[M].北京:石油工业出版社,2000:35-37.
SHEN P P.Theory and Practice of Oil & Water Movement in Porous Media[M].Beijing:Petroleum Industry Press,2000:35-37.
45 严继民,张启元,高敬琮. 吸附与凝聚:固体的表面与孔(第2版)[M]. 北京:科学出版社,1986:53-55.
YAN J M,ZHANG Q Y,GAO J C.Adsorption and Condensation: Surfaces and Pores of Solids(2nd Edition)[M]. Beijing:Science Press,1986:53-55.
46 杨峰,宁正福,胡昌蓬,等. 页岩储层微观孔隙结构特征[J]. 石油学报,2013,34(2):301-311.
YANG F,NING Z F,HU C P,et al. Characterization of microscopic pore structures in shale reservoirs[J]. Acta Petrolei Sinica,2013,34(2):301-311.
[1] 王志战. 页岩油储层DT2核磁共振解释方法[J]. 天然气地球科学, 2020, 31(8): 1178-1184.
[2] 景辅泰, 罗霞, 杨智, 张丽君, 李士祥, 陈勇, 曾云锋. 页岩层系致密储层物性下限——以鄂尔多斯盆地三叠系延长组长7段为例[J]. 天然气地球科学, 2020, 31(6): 835-845.
[3] 于洲, 周进高, 丁振纯, 魏柳斌, 魏源, 吴兴宁, 吴东旭, 王少依, 李维岭. 鄂尔多斯盆地中东部奥陶系马五41a储层特征及成因[J]. 天然气地球科学, 2020, 31(5): 686-697.
[4] 王倩茹, 陶士振, 关平. 中国陆相盆地页岩油研究及勘探开发进展[J]. 天然气地球科学, 2020, 31(3): 417-427.
[5] 李书琴, 印森林, 高阳, 张方, 李映艳, 彭寿昌. 准噶尔盆地吉木萨尔凹陷芦草沟组混合细粒岩沉积微相[J]. 天然气地球科学, 2020, 31(2): 235-249.
[6] 李二庭, 向宝力, 刘向军, 周妮, 潘长春, 迪丽达尔·肉孜null, 米巨磊. 准噶尔盆地吉木萨尔凹陷芦草沟组页岩油偏稠成因分析[J]. 天然气地球科学, 2020, 31(2): 250-257.
[7] 吕文雅, 曾联波, 周思宾, 吉园园, 梁丰, 惠晨, 尉加盛. 鄂尔多斯盆地西南部致密砂岩储层微观裂缝特征及控制因素[J]. 天然气地球科学, 2020, 31(1): 37-46.
[8] 张春林, 李剑, 陈鑫, 吴庆超. 鄂尔多斯盆地东部奥陶系盐下古地貌恢复及其对滩体的控制作用[J]. 天然气地球科学, 2019, 30(9): 1263-1271.
[9] 郭旭光, 何文军, 杨森, 王江涛, 冯右伦, 贾希玉, 邹阳, 王霞田, 黄立良. 准噶尔盆地页岩油“甜点区”评价与关键技术应用——以吉木萨尔凹陷二叠系芦草沟组为例[J]. 天然气地球科学, 2019, 30(8): 1168-1179.
[10] 陈旋, 刘小琦, 王雪纯, 马强, 刘俊田, 龚鑫, 杨小东, 石江峰, 白国娟. 三塘湖盆地芦草沟组页岩油储层形成机理及分布特征[J]. 天然气地球科学, 2019, 30(8): 1180-1189.
[11] 刘海涛, 胡素云, 李建忠, 王居峰, 王群一 , 姜文亚, 江涛, 赵长毅 , 张春明, 吴丰成. 渤海湾断陷湖盆页岩油富集控制因素及勘探潜力[J]. 天然气地球科学, 2019, 30(8): 1190-1198.
[12] 黄东, 杨光, 杨智, 杨天泉, 白蓉, 李育聪, 戴鸿鸣. 四川盆地致密油勘探开发新认识与发展潜力[J]. 天然气地球科学, 2019, 30(8): 1212-1221.
[13] 吴松涛, 林士尧, 晁代君, 翟秀芬, 王晓瑞, 黄秀, 徐加乐. 基于孔隙结构控制的致密砂岩可动流体评价——以鄂尔多斯盆地华庆地区上三叠统长6致密砂岩为例[J]. 天然气地球科学, 2019, 30(8): 1222-1232.
[14] 尤源, 梁晓伟, 冯胜斌, 牛小兵, 淡卫东, 李卫成, 王芳, . 鄂尔多斯盆地长7段致密储层主要黏土矿物特征及其地质意义[J]. 天然气地球科学, 2019, 30(8): 1233-1241.
[15] 崔景伟, 朱如凯, 李森, 齐亚林, 时晓章, 毛治国, . 坳陷湖盆烃源岩发育样式及其对石油聚集的控制——以鄂尔多斯盆地三叠系延长组长7油层组为例[J]. 天然气地球科学, 2019, 30(7): 982-996.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Al-Arouri K;Mckirdy D;Boreham C(澳大利亚);孙庆峰(译). 用油源对比方法识别澳大利亚南塔鲁姆凹陷的石油系统[J]. 天然气地球科学, 2000, 11(4-5): 57 -67 .
[2] 马立祥;. 断层封闭性研究在烃类聚集系统分析中的意义[J]. 天然气地球科学, 2000, 11(3): 1 -8 .
[3] 付广;杨勉;. 盖层发育特征及对油气成藏的作用[J]. 天然气地球科学, 2000, 11(3): 18 -24 .
[4] 杜乐天;. 地球的5个气圈与中地壳天然气开发[J]. 天然气地球科学, 2006, 17(1): 25 -30 .
[5] 杜乐天. 国外天然气地球科学研究成果介绍与分析-----以索科洛夫的著作为主线[J]. 天然气地球科学, 2007, 18(1): 1 -18 .
[6] 朱俊章;施和生;舒誉;杜家元;罗俊莲;. 珠江口盆地珠-坳陷典型烃源岩热压模拟实验――生排烃模式及TOC恢复系数探讨[J]. 天然气地球科学, 2006, 17(4): 573 -578 .
[7] 王皆明;郭平;姜凤光;. 含水层储气库气驱多相渗流机理物理模拟研究[J]. 天然气地球科学, 2006, 17(4): 597 -600 .
[8] (俄罗斯) эM加里莫夫,李红光(译). 生物圈碳同位素组成全球变化特点[J]. 天然气地球科学, 2002, 13(1-2): 1 -7 .
[9] 杨满平,李允. 考虑储层初始有效应力的岩石应力敏感性分析[J]. 天然气地球科学, 2004, 15(6): 601 -603 .
[10] 刘玉魁;闵磊;冯游文;. 塔里木盆地孔雀河地区油气地质特征及有利勘探目标[J]. 天然气地球科学, 2004, 15(3): 253 -256 .