天然气地球科学

• 天然气开发 • 上一篇    下一篇

沁水盆地赵庄井田煤层气储层水锁伤害影响因素

毛港涛,赖枫鹏,木卡旦斯·阿克木江,蒋志宇   

  1. 1.中国地质大学(北京)能源学院,北京 100083; 2.煤与煤层气共采国家重点实验室,山西 晋城 048000; 3.非常规天然气地质评价与开发工程北京市重点实验室,北京 100083
  • 收稿日期:2018-07-28 修回日期:2018-09-13 出版日期:2018-11-10
  • 通讯作者: 赖枫鹏(1981-)男,江西赣州人,副教授,博士,主要从事油气田开发理论与方法研究和教学工作. E-mail:laifengpeng@cugb.edu.cn
  • 作者简介:毛港涛(1997-),男,山西临汾人,硕士研究生,主要从事非常规油气储层孔隙结构与渗流特征研究. E-mail:maogangtao@163.com.
  • 基金资助:
    山西省基础研究计划(煤层气联合研究基金)项目“松软低渗煤储层水锁伤害机理及解除方法研究”(编号:2015012012)资助.

Study on the influencing factors of water blocking damage of coalbed methane reservoir in Zhaozhuang mine,Qinshui Basin

Mao Gang-tao,Lai Feng-peng,Mukatts Akrumyan,Jiang Zhi-yu   

  1. 1.School of Energy Resources,China University of Geosciences (Beijing),Beijing 100083,China; 2.National Key Laboratory of Coal and CBM Development,Jincheng 048000,China;3.Beijing Key Laboratory of Unconventional Natural Gas Geological Evaluation and Development Engineering,Beijing 100083,China
  • Received:2018-07-28 Revised:2018-09-13 Online:2018-11-10

摘要: 在煤层气开采过程中,水锁伤害是煤层损害的一种主要因素,因此研究煤层气储层水锁损害及影响因素有利于作出具有针对性的应对措施来减轻水锁伤害的影响,达到提高煤层气采收率、提升经济效益的目的。以沁水盆地赵庄井田14块煤样为研究对象,首先通过低温液氮吸附对煤样的孔隙结构进行了研究,认为该区块孔隙结构复杂,孔径较小,孔隙体积分布在0.007 9~0.033 7cm3/g之间,平均为0.019 45cm3/g;孔容较小,且以微孔和过渡孔孔容为主,孔隙形态不利于煤层气的渗流。其次通过核磁共振和离心机实验,基于T2截止值法判断了区块的潜在水锁伤害程度,结果表明该区块平均束缚水饱和度达到0.822 1,说明潜在水锁伤害严重。最后分析了煤样孔隙结构,润湿性以及地层压力对赵庄区块水锁伤害的影响。

关键词: 煤层气, 水锁伤害, 低温液氮吸附, 核磁共振, 赵庄井田

Abstract: In the process of coalbed methane (CBM) exploitation,water blocking effect is one of the main factors that cause the damage of CBM reservoir.Study on the mechanism of reservoir water blocking damage is conducive to make corresponding targeted measures to mitigate the effects of water blocking damage.Thus,CBM recovery is improved efficiently and higher economic benefit is obtained.Fourteen coal samples from Zhaozhuang well field were selected as the research objects.Firstly,the pore structure of coal samples was studied by low temperature nitrogen adsorption.The pore structure is complex,and the pore size of this block is small.The pore volume ranges from 0.007 9cm3/g to 0.033 7cm3/g,with an average of  0.019 45cm3/g.The pore volume is small,and the pore volume is mainly based on micro-pores and transitions,and the pore shape is not conducive to the seepage of CBM.The water blocking potential damage degree in this area was determined by nuclear magnetic resonance (NMR) and centrifuge experiments.The results show that the average irreducible water saturation in the block reaches 0.822 1,and it illustrates that water blocking potential damage is serious in the block.Finally,the influence of pore structure,wettability and formation pressure on the damage of water blocking in Zhaozhuang area was analyzed.


Key words: CBM, Water blocking damage, Low-temperature nitrogen adsorption, Nuclear magnetic resonance, Zhaozhuang mine

中图分类号: 

  • TE377
[1]Lai F P,Li Z P,Wang Y M.Impact of water blocking in fractures on the performance of hydraulically fractured horizontal wells in tight gas reservoir[J].Journal of Petroleum Science and Engineering,2017,156(7):134-141. [2]Bahrami H,Rezaee R,Clennell B.Water blocking damage in hydraulically fractured tight sand gas reservoirs:An example from Perth Basin,Western Australia[J].Journal of Petroleum Science and Engineering,2012,88-89(6):100-106. [3]Zhao Chunpeng.Research progress on water blocking damage in low permeability sandstone gas reservoirs[C]∥The Editorial Board of Journal of Xi’an Shiyou University.Proceedings of the Ninth National Symposium on Seepage Mechanics.Xi’an:The Editorial Board of Journal of Xi’an Shiyou University,2007:85-87. 赵春鹏.低渗透砂岩气藏水锁伤害研究进展[C]∥《西安石油大学学报》编辑部.第九届全国渗流力学学术讨论会论文集(二).西安:《西安石油大学学报》编辑部,2007:85-87. [4]Li Yangmin,Wang Lilong,Liu Guowei,et al.Study on coal reservoir damage mechanism in dewatering and extraction process of CBM wells[J].China Coalbed Methane,2010,7(6):39-43,47. 李仰民,王立龙,刘国伟,等.煤层气井排采过程中的储层伤害机理研究[J].中国煤层气,2010,7(6):39-43,47. [5]Liu Q,Guo Y S,An F H,et al.Water blocking effect caused by the use of hydraulic methods for permeability enhancement in coal seams and methods for its removal[J].International Journal of Mining Science and Technology,2016,26(4):615-621. [6]Yang Zhikai,Wang Ting,Shi Yuekai,et al.Damage mechanism of water lock in gas reservoir of Sulige C area and evaluation of water lock effect[J].Petrochemical Industry Application,2017,36(12):41-43,57. 杨智凯,汪婷,史跃凯,等.苏里格C区气藏水锁伤害机理及解水锁效果评价[J].石油化工应用,2017,36(12):41-43,57. [7]Zhou Xiaoping.Study on Mechanism and Dissolution Method of Reverse Condensation and Water Blocking Damage in Low Permeability Condensate Gas Wells[D].Chengdu:Southwest Petroleum University,2006:8-15. 周小平.低渗凝析气井反凝析及水锁伤害机理和解除方法研究[D].成都:西南石油大学,2006:8-15. [8]Sheng Jun,Sun Wei,Duan Baohong,et al.Water lock effect mechanism of tight sandstone gas reservoir:An example of the He 8 reservoir of the Upper Paleozoic in the southeast region of Sulige Gasfield[J].Natural Gas Geoscience,2015,26(10):1972-1978. 盛军,孙卫,段宝虹,等.致密砂岩气藏水锁效应机理探析——以苏里格气田东南区上古生界盒8段储层为例[J].天然气地球科学,2015,26(10):1972-1978. [9]Song Jinxing.Study on the Stimulation Mechanism and Technology of Coalbed Methane Reservoir by Surface Modification[D].Henan:Henan Polytechnic University,2016:112-118. 宋金星.煤储层表面改性增产机理及技术研究[D].河南:河南理工大学,2016:112-118. [10]Li Taiwei,Guo Hekun,Jin Zhirong,et al.Experimental study on water-blocking damage mechanism and  its solution mechanism in low permeability reservoirs by nuclear magnetic resonance[J].Petrochemical Industry Application,2014,33(12):28-32. 李太伟,郭和坤,金智荣,等.低渗透储层水锁伤害及解除机理核磁共振实验研究[J].石油化工应用,2014,33(12):28-32. [11]Ni G H,Zhao L H,Xie C.The mechanism and relief method of the coal seam water blocking effect (WBE) based on the surfactants[J].Powder Technology,2018,323(1):60-68. [12]Wang Rui.Physical property analysis of No.3 coalbed methane reservoir in Zhaozhuang Minefield[J].Shandong Coal Science and Technology,2017,208(12):153-154,157. 王瑞.赵庄井田3号煤层气储层物性分析[J].山东煤炭科技,2017,208(12):153-154,157. [13]Liu Jianguo.Pore Structure and Adsorption Characteristics of Coal Reservoir in Southeastern Qinshui Basin[D].Henan:Henan Polytechnic University,2016:19-59.
刘建国.沁水盆地东南部煤储层孔隙结构及其吸附性能研究[D].河南:河南理工大学,2016:19-59.
[14]Qin Jishun,Li Aifen.Reservoir Physics[M].Second Edition,Dongying:China University of Petroleum Press,2004:206. 秦积舜,李爱芳.油层物理学[M].第二版,东营:石油大学出版社,2004:206. [15]Xoaotb B B.Coal and Gas Outburst.[M].Song Shizhao,Wang Youan,Translation.Beijing:China Industry Press,1966:60-63. 霍多特 B B.煤与瓦斯突出[M].宋士钊,王佑安,译.北京:中国工业出版社,1966:60-63. [16]Fan Junjia,Ju Yiwen,Liu Shaobo,et al.Micropore structure of coals under different reservoir conditions and its implication for coalbed methane development[J].Journal of China Coal Society,2013,38(3):441-447. 范俊佳,琚宜文,柳少波,等.不同煤储层条件下煤岩微孔结构及其对煤层气开发的启示[J].煤炭学报,2013,38(3):441-447. [17]Zhang Kun,Hou Changhai,Zhao Difei,et al.Comparison of pore structure characteristics fractal characteristics between coal and shale through nitrogen adsorption experiment with the example of Shanxi Formation 15# coal and shale in Yangquan area[J].Science Technology and Engineering,2016,16(29):68-75. 张锟,侯昌海,赵迪斐,等.煤与页岩低温氮吸附孔隙结构特征与分形特征对比——以阳泉地区山西组15#煤与页岩为例[J].科学技术与工程,2016,16(29):68-75.
[18]Yang Feng,Ning Zhengfu,Wang Qing,et al.Fractal characteristics of nano-pore in shales[J].Natural  Gas Geoscience,2014,25(4):618-623.
杨峰,宁正福,王庆,等.页岩纳米孔隙分形特征[J].天然气地球科学,2014,25(4):618-623.
[19]Zhao Difei,Guo Yinghai,Xie Delu,et al.Fractal characteristics of shale reservoir pore based on nitrogen adsorption[J].Journal of Northeast Peteoleum University,2014,38(6):100-106. 赵迪斐,郭英海,解徳录,等.基于低温氮吸附实验的页岩储层孔隙分形特征[J].东北石油大学学报,2014,38(6):100-106. [20]Yao Yanbin,Liu Dameng,Cai Yindong,et al.Advanced characterization of pores and fractures in coals by nuclear magnetic resonance and X-ray computed tomography[J].Scientia Sinica:Terrae,2010,40(11):1598-1607.
姚艳斌,刘大锰,蔡益栋,等.基于NMR和X-CT的煤的孔裂隙精细定量表征[J].中国科学:地球科学,2010,40(11):1598-1607.
[21]Zhou Wenlong,Qin Yuxia.The fluid pressure of No.3 coal reservoir in Zhaozhuang coal mine and its geological influencing factors[J].Coal,2017,26(9):17-19. 周文龙,秦玉霞.赵庄矿3号煤储层流体压力及其地质影响因素[J].煤,2017,26(9):17-19. [22]Lv Y M,Tang D Z,Xu H,et al.Production characteristics and the key factors in high-rank coalbed methane fields:A case study on the Fanzhuang block,southern Qinshui Basin,China[J].International Journal of Coal Geology,2012,96-97(7):93-108. [23]Zhang S H,Tang S H,Li Z C,et al.Study of hydrochemical characteristics of CBM co-produced water of the Shizhuangnan block in the southern Qinshui Basin,China,on its implication of CBM development[J].International Journal of Coal Geology,2016,159(4):169-182. [24]Wei Maowei,Xue Yuzhi,Li Gongrang,et al.Research progress of water lock removal technology[J].Drilling Fluid & Completion Fluid,2009,26(6):65-68,96-97. 魏茂伟,薛玉志,李公让,等.水锁解除技术研究进展[J].钻井液与完井液,2009,26(6):65-68,96-97.
[1] 许耀波, 朱玉双, 张培河. 沁水盆地赵庄井田煤层气产出特征及其影响因素[J]. 天然气地球科学, 2019, 30(1): 119-125.
[2] 吴丛丛, 杨兆彪, 孙晗森, 张争光, 李庚, 彭辉. 云南恩洪向斜西南区垂向流体能量特征及有序开发建议[J]. 天然气地球科学, 2018, 29(8): 1205-1214.
[3] 郭睿良,陈小东,马晓峰,马静,[王琪],陈霖. 鄂尔多斯盆地陇东地区延长组长7段致密储层水平向可动流体特征及其影响因素分析[J]. 天然气地球科学, 2018, 29(5): 665-674.
[4] 邢 舟,曹高社,毕景豪,周新桂,张交东. 南华北盆地禹州地区ZK0606钻孔上古生界煤系烃源岩评价[J]. 天然气地球科学, 2018, 29(4): 518-528.
[5] 杨晓盈, 李永臣, 朱文涛, 黄纪勇, 单永乐, 张强. 贵州煤层气高产主控因素及甜点区综合评价模型[J]. 天然气地球科学, 2018, 29(11): 1664-1671.
[6] 单衍胜,毕彩芹,迟焕鹏,王福国,李惠. 六盘水地区杨梅树向斜煤层气地质特征与有利开发层段优选[J]. 天然气地球科学, 2018, 29(1): 122-129.
[7] 赵一民,陈强,常锁亮,田忠斌,桂文华. 基于边界要素二分的煤层气封存单元分类与评估[J]. 天然气地球科学, 2018, 29(1): 130-139.
[8] 张洲,王生维,周敏. 基于构造裂隙填图技术的煤储层裂隙发育特征预测与验证[J]. 天然气地球科学, 2017, 28(9): 1356-1362.
[9] 张宫,冯庆付,武宏亮,王克文,冯周. 基于核磁T2谱对数均值差异的碳酸盐岩气水识别[J]. 天然气地球科学, 2017, 28(8): 1243-1249.
[10] 王玫珠,王勃,孙粉锦,赵洋,丛连铸,杨焦生,于荣泽,罗金洋,周红梅. 沁水盆地煤层气富集高产区定量评价[J]. 天然气地球科学, 2017, 28(7): 1108-1114.
[11] 郭广山,柳迎红,张苗,吕玉民. 沁水盆地柿庄南区块排采水特征及其对煤层气富集的控制作用[J]. 天然气地球科学, 2017, 28(7): 1115-1125.
[12] 马东民,李沛,张辉,李卫波,杨甫. 长焰煤中镜煤与暗煤吸附/解吸特征对比[J]. 天然气地球科学, 2017, 28(6): 852-862.
[13] 朱学申,梁建设,柳迎红,王存武,廖夏,郭广山,吕玉民. 煤层气井产水影响因素及类型研究——以沁冰盆地柿庄南区块为例[J]. 天然气地球科学, 2017, 28(5): 755-760.
[14] 倪小明, 李志恒,王延斌,吴建光. 沁水盆地中部断层发育区煤层气开发有利块段优选[J]. 天然气地球科学, 2017, 28(4): 602-610.
[15] 郭晨,夏玉成,卢玲玲,任亚平. 黔西比德—三塘盆地多层叠置独立含煤层气系统发育规律与控制机理[J]. 天然气地球科学, 2017, 28(4): 622-632.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] USGS,郑军卫(译). 美国地质调查局油气资源研究计划[J]. 天然气地球科学, 2002, 13(3-4): 15 .
[2] 周兴熙;. 库车油气系统油气藏相态分布及其控制因素[J]. 天然气地球科学, 2004, 15(3): 205 -213 .
[3] 刘春慧;金振奎;朱桂芳;王庆东;张建良. . 准噶尔盆地东部吉木萨尔凹陷二叠系梧桐沟组储层物性特征及控制因素[J]. 天然气地球科学, 2007, 18(3): 375 -379 .
[4] 张顺存,;王凌;石新璞;方琳浩,;董文举,;孔玉华 . 准噶尔盆地腹部陆西地区石炭系火山岩储层的物性特征及其与电性的关系[J]. 天然气地球科学, 2008, 19(2): 198 -203 .
[5] 胡雄;李延钧;陈新领;江波;马立协;付晓文;王强;梁艳;. 柴北缘马海地区油气全烃地球化学特征与成因[J]. 天然气地球科学, 2005, 16(5): 612 -616 .
[6] 吴时国;袁圣强;. 世界深水油气勘探进展与我国南海深水油气前景[J]. 天然气地球科学, 2005, 16(6): 693 -699 .
[7] 朱小燕;孙卫;李建霆;刘宏义;李爱琴;刘一仓;田随良;胡建基 . 陇东城壕—南梁地区长6储层特征研究[J]. 天然气地球科学, 2007, 18(6): 903 -907 .
[8] 张朝;张廷山;魏祥峰;戴传瑞;王秀林 . 也门X区块下白垩统沉积相分析[J]. 天然气地球科学, 2008, 19(06): 835 -839 .
[9] 陈凤喜 王勇 张吉 杨勇. 鄂尔多斯盆地苏里格气田盒8气藏开发有利区块优选研究[J]. 天然气地球科学, 2009, 20(1): 94 -99 .
[10] 夏明军, 邓瑞健, 姜贻伟, 毕建霞, 靳秀菊. 普光气田鲕滩储层关键溶蚀期次的确立——兼议H2S与石膏的关系[J]. 天然气地球科学, 2010, 21(1): 68 -77 .