天然气地球科学

• 非常规天然气 • 上一篇    下一篇

页岩储层有效应力特征及其对产能的影响

朱维耀,马东旭   

  1. 北京科技大学土木与资源工程学院,北京 100083
  • 收稿日期:2017-12-14 修回日期:2018-05-18 出版日期:2018-06-10 发布日期:2018-06-10
  • 作者简介:朱维耀(1960-),男,辽宁沈阳人,教授,博士生导师,主要从事渗流流体力学和油气田开发研究.E-mail:weiyaook@sina.com.
  • 基金资助:

    国家重点基础研究发展计划(“973”)项目“中国南方海相页岩气的高效开发的基础研究”(编号:2013CB228002)资助.

Effective stress characteristics in shale and its effect on productivity

Zhu Wei-yao,Ma Dong-xu
 
  

  1. School of Civil and Environmental Engineering,University of Science and Technology Beijing,Beijing 100083,China
  • Received:2017-12-14 Revised:2018-05-18 Online:2018-06-10 Published:2018-06-10

摘要: 应力作用对页岩气开发影响较大,研究有效应力特征对产能的影响具有重要意义。选取四川气田下志留统龙马溪组黑色页岩和层理页岩样品,运用扫描电镜技术对微观孔隙结构特征进行描述,采用Cross-plotting法对岩样的有效应力系数进行测量。实验结果表明,黑色页岩有效应力系数较小,平均为0.29。层理页岩有效应力系数平均为0.71,层理页岩中发育有微裂缝,孔隙压力对微裂缝发育岩样的渗透率影响更大。通过指数函数对有效应力与渗透率变化关系进行拟合,黑色页岩与层理页岩应力敏感常数分别为0.268MPa-1、0.355MPa-1,层理页岩应力敏感性更强。在实验研究基础上,建立了考虑应力作用和尺度效应影响的压裂水平井产能模型,利用“废弃压力法”对采收率进行评价,计算结果表明,微裂缝发育储层受应力作用影响较大,针对高产气井应该合理控制生产压差。改造区内压裂断块大小和断块内微裂缝发育程度对采出程度影响较大,针对微裂缝发育程度较低并且压裂断块较大的储层,应实施控压生产,以提高页岩气采出程度。

关键词: 页岩气, 微裂缝, 有效应力系数, 产能, 缝网

Abstract: Research of effective stress characteristics on the productivity of shale gas has great significance.The samples of the black shale and bedding shale of the Lower Silurian Longmaxi Formation in Sichuan gas field are selected,the microscopic pore structure characteristics are described by scanning electron microscopy,effective stress coefficient is measured by the Cross-plotting method.The experimental results show that the effective stress coefficient of black shale is 0.29 on average and the bedding shale is 0.71.There are microfractures in bedding shale,pore pressure has greater influence on bedding shale.Fitting the relationship between effective stress and permeability by exponential function,the stress sensitivity constants of black shale and bedding shale are 0.268MPa-1and 0.355MPa-1.The stress sensitivity of bedding shale is stronger.On the basis of experiment,the productivity model of fractured horizontal well is established.The results show that microcrack developed reservoir is greatly influenced by the stress,the production pressure should be controlled properly for the high production well.The sizes of matrix block and microcrack have a great influence on the recovery.For the reservoirs with microcrack development and large blocks,bottom-hole pressure should be controlled to improve the recovery.

Key words: Shale gas, Micro-fracture, Effective stress coefficient, Productivity, Fracture network

中图分类号: 

  • TE132.2


[1]Warpinski N R,Teufel  L W.Determination of the Effective Stress Law for Permeability and Determination in Low-Permeability Rock[C].SPE20572,1992,7:123-131.
[2]Al-Wardy W,Zimmerman R W.Effectivestresslaw for the permeability of clay-rich sandstones[J].Journal of Geophysical Research,2004,109:B04203.[ZK)]
[3][ZK(3#]Ghabezloo S,Sulem J,Guédon S,et al.Effective stress law for the permeability of a limestone[J].International Journal of Rock Mechanics and Mining Sciences,2008,46:297-306.
[4]Bernabe Y.The effective pressure law for permeability in Chelmsford granite and Barre granite[J].International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts,1986,23(3):267-275.
[5]Berryman J G.Effective stress for transport properties of inhomogeneous porous rock[J].Journal of Geophysical Research,1992,97(B12):17409-17424.
[6]Zoback M D,Byerlee J D.Permeability and effective stress[J].American Association of Petroleum Geologists Bulletin,1975,59(1):154-158.
[7]Zoback M D.High Pressure Deformation and Fluid flow in Sandstone,Granite and Granular Materials[D].Stanford,California,U.S.:Stanford University,1975.
[8]Kwon O,Kronenberg A K,Gangi A F,et al.Permeability of Wilcox shale and its effective pressure law[J].Journal of Geophysical research,2001,106:19339-19353.
[9]Reyes L,Ossanya S O.Empirical correlation of effective stress dependent shale rock properties[J].Journal of Canadian petroleum Technology,2002,27(12):47-53.
[10]Zhang Rui,Ning Zhengfu,Yang Feng,et al.experimental study on microscopic pore structure controls on shale permeability under compact process[J].Natural Gas Geoscience,2014,25(8):1284-1289.
张睿,宁正福,杨峰,等.微观孔隙结构对页岩应力敏感影响的实验研究[J].天然气地球科学,2014,25(8):1284-1289.
[11]Terzaghi K.The shearing resistance of saturated soils and the angle between the planes of shear[C].Proceedings of the  1st International Conference on Soil Mechanics and Foundation Engineering,Harvard University,1936,1:54-56.
[12]Guo Wei,Xiong Wei,Gao Shusheng.Experiment study on stress sensitivity of shale gas reservoirs[J].Special Gas Reservoirs,2012,19(1):95-97.
郭为,熊伟,高树生.页岩气藏应力敏感效应实验研究[J].特种油气藏,2012,19(1):95-97.
[13]Rob Heller,John Vermylen,Mark Zoback.Experimental Investigation of Matrix Permeability of Gas Shales[C].SPE Journal,2014,98:975-995.
[14]Yang Feng,Ning Zhengfu,Hu Changpeng,et al.Characterization of microscopic pore structure in shale reservoirs[J].Acta Petrolei Sinica,2013,34(2):301-311.
杨峰,宁正福,胡昌蓬,等.页岩储层微观孔隙结构特征[J].石油学报.2013,34(2):301-311.
[15]Deng Jia,Zhu Weiyao,Ma Qian,et al.Productivity prediction model of shale gas considering stress sensitivity[J].Natura Gas Geoscience,2013,24(3):456-460.
邓佳,朱维耀,马千,等.考虑应力敏感的页岩气产能预测模型[J].天然气地球科学,2013,24(3):456-460.
[16]Yin Congbin,Li Yanchao,Wang Subing,et al.Methodology of hydraulic fracture network prediction and its application[J].Natural Gas Industry,2017,37(4):60-68.
尹丛彬,李彦超,王素兵,等.页岩压裂裂缝网络预测方法及应用[J].天然气工业,2017,37(4):60-68.
[17]Mi Lidong,Jiang Hanqiao,Li Junjian,et al.Mathematical characterization of permeability in shale reservoir[J].Acta Petrolei Sinica,2014,35(5):928-934.
糜利栋,姜汉桥,李俊键,等.页岩储层渗透率数学表征[J].石油学报,2014,35(5):928-934.
[18]Cipolla C L,Lolon E P,Erdle J C,et al.Reservoir modeling in shale-gas reservoirs[J].SPE Reservoir Evaluation & Engineering,2013,13(4):638-653.
[19]Walsh J B.Effect of pore pressure and confining pressure on fracture permeability[J].International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts,1981,18(5):429-435.
[20]Song Zhiyong,Song Hongqing,Ma Dongxu,et al.Morphological characteristics of microscale fractures in gas shale and its pressure-dependent permeability[J].Interpretation,2017,5:SB25-SB31.
[21]Zhu Weiyao,Ma Dongxu,Zhu Huayin,et al.Stress sensitivity of shale gas reservoir and its influence on productivity[J].Natural Gas Geoscience,2016,27(5):892-897.
朱维耀,马东旭,朱华银,等.页岩储层应力敏感性及其对产能的影响[J].天然气地球科学,2016,27(5):892-897.
[22]Liang Chao,Jiang Zaixing,Yang Yiting,et al.Characteristics of shale lithofacies and reservoir space of the Wufeng-Longmaxi Formation,Sichuan Basin[J].Petroleum Exploration and Developent,2012,39(6):691-698.
梁超,姜在兴,杨镱婷,等.四川盆地五峰组—龙马溪组页岩岩相及储集空间特征[J],石油勘探与开发,2012,39(6):691-698.
[22]Ma Tianshou,Chen Ping.Influence of  shale bedding plane on wellbore stability for horizontal wells[J].Journal of Southwest Petroleum University,2014,36(5):97-104.
马天寿,陈平.页岩层理对水平井井壁稳定的影响[J].西南石油大学学报,2014,36(5):97-104.
[23]Zhang Tao,Li Xiangfang,Wang Yonghui,et al.Study on the effect of gas-shale reservoir special properties on the fracturing fluid recovery efficiency and production performance[J].Natural Gas Geoscience,2017,28(6):828-838.
张涛,李相方,王永辉,等.页岩储层特殊性质对压裂液返排率和产能的影响[J].天然气地球科学,2017,28(6):828-838.

[1] 沈骋, 赵金洲, 任岚, 范宇. 四川盆地龙马溪组页岩气缝网压裂改造甜点识别新方法[J]. 天然气地球科学, 2019, 30(7): 937-945.
[2] 王科, 李海涛, 李留杰, 张庆, 补成中, 王志强. 3种常用页岩气井经验递减方法——以四川盆地威远区块为例[J]. 天然气地球科学, 2019, 30(7): 946-954.
[3] 张晗. 四川盆地龙马溪组页岩储层缝网导流能力优化[J]. 天然气地球科学, 2019, 30(7): 955-962.
[4] 苟启洋, 徐尚, 郝芳, 舒志国, 杨峰, 陆扬博, 张爱华, 王雨轩, 程璇, 青加伟, 高梦天. 基于灰色关联的页岩储层含气性综合评价因子及应用——以四川盆地焦石坝区块为例[J]. 天然气地球科学, 2019, 30(7): 1045-1052.
[5] 崔春兰, 董振国, 吴德山. 湖南保靖区块龙马溪组岩石力学特征及可压性评价[J]. 天然气地球科学, 2019, 30(5): 626-634.
[6] 王秀平, 牟传龙, 肖朝晖 , 郑斌嵩 , 陈尧 , 王启宇. 鄂西南地区五峰组—龙马溪组连续沉积特征[J]. 天然气地球科学, 2019, 30(5): 635-651.
[7] 黄小青, 王建君, 杜悦, 李林, 张卓. 昭通国家级页岩气示范区YS108区块小井距错层开发模式探讨[J]. 天然气地球科学, 2019, 30(4): 557-565.
[8] 姜瑞忠, 张福蕾, 郜益华, 崔永正, 沈泽阳, 原建伟. 三重介质压裂气藏椭圆流非稳态产能模型[J]. 天然气地球科学, 2019, 30(3): 370-378.
[9] 张辉, 尹国庆, 王海应. 塔里木盆地库车坳陷天然裂缝地质力学响应对气井产能的影响[J]. 天然气地球科学, 2019, 30(3): 379-388.
[10] 曾凡辉, 彭凡, 郭建春, 钟华, 向建华. 考虑页岩缝宽动态变化的微裂缝气体质量传输模型[J]. 天然气地球科学, 2019, 30(2): 237-246.
[11] 张磊, 徐兵祥, 辛翠平, 乔向阳, 穆景福, 许阳, 韩长春. 考虑主裂缝的页岩气产能预测模型[J]. 天然气地球科学, 2019, 30(2): 247-256.
[12] 谢维扬, 刘旭宁, 吴建发, , 张鉴, 吴天鹏, 陈满. 页岩气水平井组产量递减特征及动态监测[J]. 天然气地球科学, 2019, 30(2): 257-265.
[13] 徐加祥, 丁云宏, 杨立峰, 刘哲, 陈挺. 页岩气储层迂曲微裂缝二维重构及多点起裂分析[J]. 天然气地球科学, 2019, 30(2): 285-294.
[14] 郭旭升. 四川盆地涪陵平桥页岩气田五峰组—龙马溪组页岩气富集主控因素[J]. 天然气地球科学, 2019, 30(1): 1-10.
[15] 姜瑞忠, 原建伟, 崔永正, 张伟, 张福蕾, 张海涛, 毛埝宇. 基于TPHM的页岩气藏多级压裂水平井产能分析[J]. 天然气地球科学, 2019, 30(1): 95-101.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 旷理雄,郭建华,王英明,冯永宏,李广才 . 柴窝堡凹陷达坂城次凹油气成藏条件及勘探方向[J]. 天然气地球科学, 2005, 16(1): 20 -24 .
[2] 邵荣;叶加仁;陈章玉;. 流体包裹体在断陷盆地含油气系统研究中的应用概述[J]. 天然气地球科学, 2000, 11(6): 11 -14 .
[3] 马立祥;. 断层封闭性研究在烃类聚集系统分析中的意义[J]. 天然气地球科学, 2000, 11(3): 1 -8 .
[4] 廖成君. VSP技术在锦612复杂断块油藏开发部署研究中的应用[J]. 天然气地球科学, 2005, 16(1): 117 -122 .
[5] 杜乐天;. 地球的5个气圈与中地壳天然气开发[J]. 天然气地球科学, 2006, 17(1): 25 -30 .
[6] 曹华;龚晶晶;汪贵锋;. 超压的成因及其与油气成藏的关系[J]. 天然气地球科学, 2006, 17(3): 422 -425 .
[7] 王杰,刘文汇,秦建中,张隽. 中国东部幔源气藏存在的现实性与聚集成藏的规律性[J]. 天然气地球科学, 2007, 18(1): 19 -26 .
[8] 杜乐天. 国外天然气地球科学研究成果介绍与分析-----以索科洛夫的著作为主线[J]. 天然气地球科学, 2007, 18(1): 1 -18 .
[9] 孔庆芬,王可仁. 鄂尔多斯盆地西缘奥陶系烃源岩热模拟试验研究[J]. 天然气地球科学, 2006, 17(2): 187 -191 .
[10] 刘全有;刘文汇;Krooss B M;王万春;戴金星;. 天然气中氮的地球化学研究进展[J]. 天然气地球科学, 2006, 17(1): 119 -124 .