天然气地球科学

• 非常规天然气 • 上一篇    下一篇

富有机质页岩增产改造氧化液浸泡离子溶出行为

康毅力,豆联栋,游利军,陈强,程秋洋   

  1. 西南石油大学油气藏地质及开发工程国家重点实验室,四川 成都 610500
  • 收稿日期:2018-02-01 修回日期:2018-05-23 出版日期:2018-07-10 发布日期:2018-07-10
  • 作者简介:康毅力(1964-),男,天津蓟县人,教授,博士生导师,博士,主要从事储层保护理论与技术、非常规天然气、油气田开发地质研究与教学工作.E-mail:cwctkyl@163.com.
  • 基金资助:
    国家自然科学基金面上项目“富有机质页岩氧化致裂增渗加速气体传输机理研究”(编号:51674209); 非常规油气层保护四川省青年科技创新研究团队项目(编号:2016TD0016);国家科技重大专项(编号: 2016ZX05061);四川省教育厅重点项目(编号:16ZA0077);四川省高校科技成果转化重大培育项目“富有机质页岩气藏提高采收率方法”(编号:17CZ0040)联合资助.
     

Ionic dissolution behaviors of organic shale soaked in oxidizing liquid for reservoirs stimulation

Kang Yi-li,Dou Lian-dong,You Li-jun,Chen Qiang,Cheng Qiu-yang   

  1. 1.State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation,Southwest Petroleum University,Chengdu 610500,China
  • Received:2018-02-01 Revised:2018-05-23 Online:2018-07-10 Published:2018-07-10

摘要: 页岩储层富含有机质、黄铁矿等还原性组分,因而氧化溶蚀致裂是极具潜力成为一种新的页岩油气层增产改造技术。以往研究侧重于页岩氧化后孔隙结构及传质能力的变化,但对页岩氧化过程水溶液性质变化关注不多,而水溶液性质又与压裂液返排、黏土水化作用、水相圈闭损害缓解等密切相关。选取四川盆地龙马溪组富有机质页岩粉体样品,实验测试了页岩粉体样品与蒸馏水、不同浓度氧化液浸泡过程水溶液离子组成、pH、电导率和浊度等参数,精细描述了页岩氧化反应过程。实验结果表明,页岩氧化液浸泡时溶液中Fe3+、Ca2+、Mg2+等离子的浓度大幅度增加、pH降低、电导率和浊度增加。分析认为,氧化液选择性溶解页岩中黄铁矿、有机质等还原性组分和(铁)白云石、方解石等碳酸盐矿物,释放出离子;或将矿物集合体分散成粒径更小的微粒,从微观层面上“破碎”页岩中部分矿物,形成溶蚀孔和微裂缝,有利于提高页岩渗透率;宜合理调控入井氧化液浓度和氧化处理时间,优化设计处理工艺;页岩氧化改造后的返排液处理,可沿用现行的页岩压裂返排液处理方法和工艺。

关键词: 页岩气, 储层改造, 氧化液, 离子溶出, 微粒分散/运移

Abstract:

Shale reservoirs are rich in reductive contents such as organic matter and pyrite,thus corrosion and fracturing shale by oxidation can have great potential to be a new technology for shale reservoir stimulation.Previous studies focused more on the changes in pore structure and multi-scale seepage capacity of the shale after oxidation,and not much attention was paid to the changes in the properties of aqueous solution in the process of shale oxidation.However,the properties of aqueous solution have important influence on the returnedfracturing fluid,clay hydration,and relieving aqueous phase trapping damage.The organic matter-rich shale powder samples of Longmaxi Formation in Sichuan Basin were selected to conduct the experiment of immersion in oxidizing liquid with different concentrations and distilled water respectively,and the parameters of cationic composition,pH,Ec,and turbidity of aqueous solution were tested,and the oxidation process of shale was described in detail.In oxidation environment,the dissolved amount of Fe3+,Ca2+ and Mg2+ions in the liquid increases sharply,the pH of the liquid is low,the Ec and turbidity increase.This paper draws the conclusion that the oxidation selectively dissolves the reductive contents such as pyrite,organic matters and the carbonate minerals such as (ankerite) dolomite and calcite in the shale,and releases ion,or disperses mineral aggregates into the size-smaller particles.Some of the shale minerals are “broken” at the microcosmic level,and dissolved pores and micro-cracks are formed,which will help improve the permeability of shale matrix.It is advisable to regulate and control the concentration of oxidizing liquid and the treatment time of oxidation,and optimum and design the treatment process.The flow-back fluid in oxidative stimulation can be dealt with the existing treating methods and technics of shale fracturing flow-back fluid.

Key words: Shale gas, Reservoirs stimulation, Oxidizing liquid, Ionic dissolution, Particle dispersion/migration

中图分类号: 

  • TE357

[1]Zou Caineng,Yang Zhi,Zhu Rukai,et al.Progress in China’s unconventional oil & gas exploration development and theoretical technologies[J].Acta Geologica Sinica,2015,89(6):979-1007.
邹才能,杨智,朱如凯,等.中国非常规油气勘探开发与理论技术进展[J].地质学报,2015,89(6):979-1007.
[2]Zou Caineng,Tao Shizhen,Yang Zhi,et al.New advance in unconventional petroleum exploration and research in China[J].Bulletin of Mineralogy,Petrology and Geochemistry,2012,31(4):312-322.
邹才能,陶士振,杨智,等.中国非常规油气勘探与研究新进展[J].矿物岩石地球化学通报,2012,31(4):312-322.
[3]Xie He Ping,Gao Feng,Ju Yang,et al.Novel idea of the theory and application of 3D volume fracturing for stimulation of shale gas reservoirs[J].Chinese Science Bulletin,2016,61(1):36-46.
谢和平,高峰,鞠杨,等.页岩气储层改造的体破裂理论与技术构想[J].科学通报,2016,61(1):36-46.
[4]Ju Yiwen,Bu Hongling,Wang Guochang,et al.Main characteristics of shale gas reservoir and its effect on the reservoir reconstruction[J].Advances in Earth Science,2014,29(4):492-506.
琚宜文,卜红玲,王国昌.页岩气储层主要特征及其对储层改造的影响[J].地球科学进展,2014,29(4):492-506.
[5]Ren Junjie,Guo Ping,Peng Song,et al.Analysis on productivity decline of partial open fractured wells in shale gas reservoirs[J].Drilling & Production Technology,2015,38(2):8,43-46.
任俊杰,郭平,彭松,等.部分压开页岩气井产能递减分析[J].钻采工艺,2015,38(2):8,43-46.
[6]Li Jianqiu,Cao Jianhong,Duan Yonggang,et al.Seepage mechanism and productivity decline of shale-gas well[J].Natural Gas Exploration and Development,2011,34(2):34-37,81.
李建秋,曹建红,段永刚,等.页岩气井渗流机理及产能递减分析[J].天然气勘探与开发,2011,34(2):34-37,81.
[7]You Lijun,Kang Yili,Chen Qiang,et al.Prospect of shale gas recovery enhancement by oxidation-induced rock burst[J].Natural Gas Industry,2017,35(5):53-61.
游利军,康毅力,陈强,等.氧化爆裂提高页岩气采收率的前景[J].天然气工业,2017,35(5):53-61.
[8]You Lijun,Yang Pengfei,Cui Jia,et al.Feasibility of oxidative stimulation in organic matter-rich shale gas reservoir[J].Petroleum Geology and Recovery Efficiency,2017,24(6):1-7.
游利军,杨鹏飞,崔佳,等.页岩气层氧化改造的可行性[J].油气地质与采收率,2017,24(6):1-7.
[9]Zou Caineng,Tao Shizhen,Yuan Xuanjun,et al.Global importance of “continuous” petroleum reservoirs:Accumulation,distribution and evaluation[J].Petroleum Exploration and Development,2009,36(6):669-682.
邹才能,陶士振,袁选俊,等.“连续型”油气藏及其在全球的重要性:成藏、分布与评价[J].石油勘探与开发,2009,36(6):669-682.
[10]Chen Gengsheng,Dong Dazhong,Wang Shiqian,et al.A preliminary study on accumulation mechanism and enrichment pattern of shale gas[J].Natural Gas Industry,2009,29(5):17-21,134-135.
陈更生,董大忠,王世谦,等.页岩气藏形成机理与富集规律初探[J].天然气工业,2009,29(5):17-21,134-135.
[11]Chen Q,Kang Y,You L,et al.Change in composition and pore structure of Longmaxi black shale during oxidative dissolution[J].International Journal of Coal Geology,2017,172:95-111.
[12]Kang Yili,Yang Bin,Li Xiangchen,et al.Quantitative characterization of micro forces in shale hydration and field applications[J],Petroleum Exploration and Development,2017,44(2):1-8.
康毅力,杨斌,李相臣,等.页岩水化微观作用力定量表征及工程应用[J].石油勘探与开发,2017,44(2):1-8.
[13]Mao Haijun,Guo Yintong,Wang Guangjin,et al.Evaluation of impact of clay mineral fabrics on hydration process[J].Rock and Soil Mechanics,2010,31(9):2723-2728.
冒海军,郭印同,王光进,等.黏土矿物组构对水化作用影响评价[J].岩土力学,2010,31(9):2723-2728.
[14]Wang Fei,Pan Ziqing.Numerical simulation of chemical potential dominated fracturing fluid flowback in hydraulically fractured shale gas reservoirs[J].Petroleum Exploration and Development,2016,43(6):971-977.
王飞,潘子晴.化学势差驱动下的页岩储集层压裂液返排数值模拟[J].石油勘探与开发,2016,43(6):971-977.
[15]Kang Yili,Zhang Xiaoyi,You Lijun,et al.The experimental research on spontaneous flowback relieving aqueous phase trapping damage in shale gas reservoirs[J].Natural Gas Geoscience,2017,28(6):819-827.
康毅力,张晓怡,游利军,等.页岩气藏自然返排缓解水相圈闭损害实验研究[J].天然气地球科学,2017,28(6):819-827.
[16]He Qiping,Yin Congbin,Li Jia,et al.Research and application of fracturing fluid flowback technologies for shale gas exploration in Weiyuan-Changning block[J].Drilling & Production Technology,2016,39(1):11,118-121.
何启平,尹丛彬,李嘉,等.威远—长宁地区页岩气压裂返排液回用技术研究与应用[J].钻采工艺,2016,39(1):11,118-121.
[17]Haluszczak L O,Rose A W,Kump L R.Geochemical evaluation of flowback brine from Marcellus gas wells in Pennsylvania,USA[J].Applied Geochemistry,2013,28:55-61.
[18]Zolfaghari A,Dehghanpour H,Noel M,et al.Laboratory and field analysis of flowback water from gas shales[J].Journal of Unconventional Oil and Gas Resources,2016,14:113-127.
[19]Tang Hongxiao.Calculation of carbonation balance and pH adjustment(First)[J].Environmental Science,1979(5):38-45.
汤鸿霄.碳酸平衡和pH调整计算(上)[J].环境科学,1979(5):38-45.
[20]Aksulu H,Hms D,Strand S,et al.Evaluation of Low-Salinity enhanced oil recovery effects in sandstone:Effects of the Temperature and pH gradient[J].Energy and Fuels,2012,26(6):3497-3503.
[21]Rezaeidoust A,Puntervold T,Austad T.Chemical verification of the EOR mechanism by using low saline/smart water in sandstone[J].Energy and Fuels,2011,25(3):2151-2162.
[22]Huang Futang,Zou Xinfang,Jiang Hongqi,et al.Analysis on organic acid composition in the oxidized products of different typed kerogens in the north Songliao Basin and study of its effects on reservoir structure[J].Petroleum Geology & Experiment,1995,17(2):156-166.
黄福堂,邹信芳,姜洪启,等.松辽盆地北部不同类型干酪根氧化产物中有机酸成分分析及对储层结构影响研究[J].石油实验地质,1995,17(2):156-166.
[23]Yang Demin,Xia Hong,Cheng Fangping.Advanced treatment of shale gas drilling wastewater by ozonation[J].Technology of Water Treatment,2016,42(2):88-91.
杨德敏,夏宏,程方平.臭氧法深度氧化处理页岩气钻井废水[J].水处理技术,2016,42(2):88-91.
[24]Xiong Ying,Liu Yuzhou,Liu Youquan,et al.Recycling disposal technology and application of shale gas fracturing flowback fluid in Changning-Weiyuan area[J].Chemical Engineering of Oil & Gas,2016,45(5):51-55.
熊颖,刘雨舟,刘友权,等.长宁—威远地区页岩气压裂返排液处理技术与应用[J].石油与天然气化工,2016,45(5):51-55.

[1] 沈骋, 赵金洲, 任岚, 范宇. 四川盆地龙马溪组页岩气缝网压裂改造甜点识别新方法[J]. 天然气地球科学, 2019, 30(7): 937-945.
[2] 王科, 李海涛, 李留杰, 张庆, 补成中, 王志强. 3种常用页岩气井经验递减方法——以四川盆地威远区块为例[J]. 天然气地球科学, 2019, 30(7): 946-954.
[3] 苟启洋, 徐尚, 郝芳, 舒志国, 杨峰, 陆扬博, 张爱华, 王雨轩, 程璇, 青加伟, 高梦天. 基于灰色关联的页岩储层含气性综合评价因子及应用——以四川盆地焦石坝区块为例[J]. 天然气地球科学, 2019, 30(7): 1045-1052.
[4] 崔春兰, 董振国, 吴德山. 湖南保靖区块龙马溪组岩石力学特征及可压性评价[J]. 天然气地球科学, 2019, 30(5): 626-634.
[5] 王秀平, 牟传龙, 肖朝晖 , 郑斌嵩 , 陈尧 , 王启宇. 鄂西南地区五峰组—龙马溪组连续沉积特征[J]. 天然气地球科学, 2019, 30(5): 635-651.
[6] 黄小青, 王建君, 杜悦, 李林, 张卓. 昭通国家级页岩气示范区YS108区块小井距错层开发模式探讨[J]. 天然气地球科学, 2019, 30(4): 557-565.
[7] 姜瑞忠, 张福蕾, 郜益华, 崔永正, 沈泽阳, 原建伟. 三重介质压裂气藏椭圆流非稳态产能模型[J]. 天然气地球科学, 2019, 30(3): 370-378.
[8] 曾凡辉, 彭凡, 郭建春, 钟华, 向建华. 考虑页岩缝宽动态变化的微裂缝气体质量传输模型[J]. 天然气地球科学, 2019, 30(2): 237-246.
[9] 张磊, 徐兵祥, 辛翠平, 乔向阳, 穆景福, 许阳, 韩长春. 考虑主裂缝的页岩气产能预测模型[J]. 天然气地球科学, 2019, 30(2): 247-256.
[10] 谢维扬, 刘旭宁, 吴建发, , 张鉴, 吴天鹏, 陈满. 页岩气水平井组产量递减特征及动态监测[J]. 天然气地球科学, 2019, 30(2): 257-265.
[11] 徐加祥, 丁云宏, 杨立峰, 刘哲, 陈挺. 页岩气储层迂曲微裂缝二维重构及多点起裂分析[J]. 天然气地球科学, 2019, 30(2): 285-294.
[12] 郭旭升. 四川盆地涪陵平桥页岩气田五峰组—龙马溪组页岩气富集主控因素[J]. 天然气地球科学, 2019, 30(1): 1-10.
[13] 姜瑞忠, 原建伟, 崔永正, 张伟, 张福蕾, 张海涛, 毛埝宇. 基于TPHM的页岩气藏多级压裂水平井产能分析[J]. 天然气地球科学, 2019, 30(1): 95-101.
[14] 周尚文, 王红岩, 刘浩, 郭伟, 陈浩. 基于Arps产量递减模型的页岩损失气量计算方法[J]. 天然气地球科学, 2019, 30(1): 102-110.
[15] 许崇祯, 张公社, 殷嘉伟, 纪国法, 李新发. 考虑解吸—吸附的页岩气藏压裂水平井综合渗流模型[J]. 天然气地球科学, 2019, 30(1): 111-118.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 旷理雄,郭建华,王英明,冯永宏,李广才 . 柴窝堡凹陷达坂城次凹油气成藏条件及勘探方向[J]. 天然气地球科学, 2005, 16(1): 20 -24 .
[2] 邵荣;叶加仁;陈章玉;. 流体包裹体在断陷盆地含油气系统研究中的应用概述[J]. 天然气地球科学, 2000, 11(6): 11 -14 .
[3] 杜乐天;. 地球的5个气圈与中地壳天然气开发[J]. 天然气地球科学, 2006, 17(1): 25 -30 .
[4] 王杰,刘文汇,秦建中,张隽. 中国东部幔源气藏存在的现实性与聚集成藏的规律性[J]. 天然气地球科学, 2007, 18(1): 19 -26 .
[5] 李亮,万晓龙,李志伟,张永强,张振红. 油气成藏模拟实验在白于山油藏开发中的应用[J]. 天然气地球科学, 2006, 17(2): 219 -222 .
[6] 李凤杰;王多云;. 鄂尔多斯盆地西峰油田延长组高分辨率层序地层学研究[J]. 天然气地球科学, 2006, 17(3): 339 -344 .
[7] 唐俊伟, 马新华, 焦创斌贝, 范丽宏. 气井产能测试新方法――回压等时试井[J]. 天然气地球科学, 2004, 15(5): 540 -544 .
[8] 古莉,于兴河,万玉金,杜秀芳,帅勇乾,闫伟鹏 . 冲积扇相储层沉积微相分析――以吐哈盆地鄯勒油气田第三系气藏为例[J]. 天然气地球科学, 2004, 15(1): 82 -86 .
[9] 王杰;陈践发;. 关于碳酸盐岩烃源岩有机质丰度恢复的探讨――以华北中、上元古界碳酸盐岩为例[J]. 天然气地球科学, 2004, 15(3): 306 -310 .
[10] 何文祥;王培荣;潘贤庄;唐义疆;. 莺-琼盆地原油成熟度研究[J]. 天然气地球科学, 2004, 15(4): 387 -390 .