天然气地球科学 ›› 2010, Vol. 21 ›› Issue (1): 132–138.doi: 10.11764/j.issn.1672-1926.2010.01.132

• 天然气地球化学 • 上一篇    下一篇

柴达木盆地西部七个泉与咸水泉油田原油地球化学特征对比研究

施洋,包建平,朱翠山,詹兆文,袁莉,徐文   

  1. 1.长江大学地球化学系,湖北 荆州 434023;
    2.长江大学油气资源与勘探技术教育部重点实验室,湖北 荆州 434023
  • 收稿日期:2009-06-21 修回日期:2009-11-11 出版日期:2010-02-10 发布日期:2010-02-10
  • 通讯作者: 施洋shiyg007@163.com. E-mail:shiyg007@163.com.
  • 作者简介:施洋(1983-),男,湖北钟祥人,硕士研究生,主要从事油气地球化学研究.
  • 基金资助:

    “十一五”国家重大专项课题(编号:2008ZX05025-03)资助.

Comparative Study on Geochemistry between Crude Oils from Qigequan and Xianshuiquan Oilfields in Western Qaidam Basin

SHI  Yang, BAO Jian-Ping,ZHU Cui-Shan, ZHAN  Zhao-Wen, YUAN Li,XU Wen   

  1. 1.Geochemistry Department, Yangtze University, Jingzhou 434023, China;
    2.Key Laboratory of Oil & Gas Resource and Exploration Technology, Yangtze University, Jingzhou 434023, China
  • Received:2009-06-21 Revised:2009-11-11 Online:2010-02-10 Published:2010-02-10

摘要:

通过对取自七个泉油田和咸水泉油田原油样品中各类生物标志物的分布与组成特征的对比,发现七个泉油田原油中正构烷烃系列比较完整且丰度较高,而咸水泉油田原油中正构烷烃因轻微生物降解而被部分消耗,导致咸水泉油田原油的Pr/nC17值和Ph/nC18值明显高于七个泉油田原油。2个油田原油均呈现较强烈的植烷优势,七个泉油田原油的姥/植比更低,表明它们都来源于强还原环境下形成的烃源岩。在生物标志物分布与组成特征上,七个泉油田原油甾烷的C27/C29>1,而咸水泉[JP2]油田原油甾烷的C27/C29值均为0.8,意味着七个泉油田原油中浮游植物贡献高于咸水泉油田。咸水泉油田原油的C29甾烷ααα20S/(ααα20S+ααα20R)值和重排补身烷含量高于七个泉油田原油,暗示咸水泉油田原油成熟度比七个泉油田原油成熟度高。2个油田的长链藿烷序列均比较完整,伽马蜡烷含量也较高,对比长链藿烷和伽马蜡烷的丰度发现咸水泉油田原油的长链藿烷和伽马蜡烷丰度都比七个泉油田原油低,说明咸水泉油田原油形成的环境的盐度和还原性比七个泉油田原油弱。

关键词: 柴达木盆地西部, 七个泉油田, 咸水泉油田, 原油, 生物标志物

Abstract:

Comparative study on distribution and composition of various biomarkers in crude oil from the oilfields of Qigequan and Xianshuiquan indicates the crude oil in the Qigequan oilfield has the integrated and abundant n-|alkane serial, but the normal alkanes in the oil of the Xianshuiquan oilfield were partly biodegraded, resulting in the higher ratios of Pr/nC17 and Ph/nC18.The phytane preference in the crude oil from both oilfields and the less ratios of Pr/Ph in the Qigequan oil indicate that they were derived from the source rocks deposited in strong reducing environment. In the C27—C29sterane serial, the ratio of C27/C29 is more than 1.0 in the Qigequan oil, while the ratio is about 0.8 in Xianshuiquan oil, suggesting that the contribution of algae plankton to oil in the Qigequan oilfield is more than that in the Xianshuiquan oilfield. The ratios of ααα20S/(ααα20S+ααα20R)for C29 sterane and diadrimane abundance in the Xianshuiquan oil are more than that in the Qigequan oil, inferring that the thermal maturity of the Xianshuiquan oil is higher than that of the Qigequan oil. The integrated distribution of hopane serial in both oilfields exists, with high abundance of gammacerane. By comparision of abundance of long-chain hopane and gammacerane in the oilfield of Xianshuiquan and Qigequan, we find that abundance of long-chain hopane and gammacerane in the former oil is lower than that in the later, indicating that the source rock of oil from the Qigequan oilfield was deposited under higher salinity and stronger reducing environment.

Key words: Western Qaidam basin, Qigequan oilfield, Xianshuiquan oilfield, Crude oil, Biomarker.

中图分类号: 

  • TE122.1+13
[1]Fang Xiang, Jiang Bo, Zhang Yongshu. Faulted structure and hydrocarbon accumulation in western Qaidam basin[J].Oil & Gas Geology, 2006, 27(6):56-61.[方向,江波,张永庶.柴达木盆地西部地区断裂构造与油气聚集[J].石油与天然气地质,2006,27(6):56-61.]
[2]Song Jianguo, Liao Jian. Structural characteristics and petroliferous regions in the Chaidamu basin[J].Acta Petrolei Sinica, 1982(supplement):14-23.[宋建国,廖健.柴达木盆地构造特征及油气区的划分[J].石油学报,1982(增刊):14-23.]
[3]Wang Li, Jin Qiang. Tertiary hydrocarbon kitchen in western Qaidam basin and its control on hydrocarbon accumulation[J].Oil & Gas Geology, 2005, 26(4):467-472.[王力,金强.柴达木盆地西部第三系烃源灶及其对油气聚集的控制作用[J].石油与天然气地质,2005,26(4):467-472.]
[4]Guo Zeqing, Zhong Jianhua, Liu Weihong,et al. Relationship between abnormal overpressure and reservoir formation in the Tertiary of the western Qaidam basin[J].Acta Petrolei Sinica, 2004, 25(4):13-18.[郭泽清,钟建华,刘卫红,等.柴达木盆地西部第三系异常高压与油气成藏[J].石油学报,2004,25(4):13-18.]
[5]Zhao Dongsheng, Zhang Min, Zhang Daowei,et al.Maturity of Tertiary oil-source in west Qaidam basin[J].Acta Sedimentologica Sinica, 2007, 25(2):319-324.[赵东升,张敏,张道伟,等.柴达木盆地西部地区古、新近系油源成熟度[J].沉积学报,2007,25(2):319-324.]
[6]Jin Qiang, Zha Ming, Zhao Lei.Identification of effective source rocks in the Tertiary evaporate facies in the western Qaidam basin[J].Acta Sedimentologica Sinica, 2001, 19(1):125-129.[金强,查明,赵磊.柴达木盆地西部第三系盐湖相有效生油岩的识别[J].沉积学报,2001,19(1):125-129.][7]Seifert W K, Moldowan J M. The effect of biodegradation on steranes and terpanes in crude oil[J]. Geochimiac et Cosmochimica Acta, 1979, 43:111-126.[8]Moldowan J M, Sundararaman P, Salvatori T,et al. Source Correlation and Maturity Assessment of Select Oils and Rocks From the Central Adratic Basin(Italy and Yugoslavia)[C]//Moldowan J M, Albrecht P, Philp R P,et al. Biological Markers in Sediments and Petroleum. Prentice Hall, Englewood Cliffs, N J,1992:370-401.
[9]Duan Chuanli, Chen Jianfa.Geochemical characteristics of biodegraded crude oil and their significances[J].Natural Gas Geoscience, 2007, 18(2):278-283.[段传丽,陈践发.生物降解原油的地球化学特征及其意义[J].天然气地球科学,2007,18(2):278-283.]
[10]Grimalt J,Albaiges J. Source and occurrence of C12-C22 nalkane distributionswith even carbon-number preference in sedimentary environments[J].Geochim Cosmochim Acta, 1987,51:1379-1384.
[11]Zhang Chunming, Sun Fujie, Lin Qing,et al.Distribution of bicyclic sesquiterpanes in QHD32-6 oilfield and its significance[J].China Offshore Oil and Gas, 2005, 17(4):228-230.[张春明,孙福街,林青,等.秦皇岛32-6油田双环倍半萜的分布及其意义[J].中国海上油气,2005,17(4):228-230.]
[12]Zhu Yangming. Geochemistry of Mesozoic Terrestrial Source Rock and Oil in the Tarim Basin[M].Chongqing: Chongqing University Press, 1997.[朱扬明.塔里木盆地中生界陆相生油层及原油地球化学[M].重庆:重庆大学出版社, 1997.]
[13]Zhang Min, Lin Renzi, Mei Bowen. Reservoir Geochemistry—The Research of Petroleum  System of Kuqa Depression, Tarim Basin, China[M].Chongqing: Chongqing University Press, 1997.[张敏,林壬子,梅博文.油藏地球化学—塔里木盆地库车含油气系统研究[M].重庆:重庆大学出版社, 1997.]
[14]Bao Jianping, Zhu Cuishan, Ni Chunhua. Distribution and composition of biomarkers in crude oils from different sags of Beibuwan basin[J].Acta Sedimentologica Sinica, 2007, 25(4):646-651.[包建平,朱翠山,倪春华.北部湾盆地不同凹陷原油生物标志物分布与组成特征[J].沉积学报,2007,25(4):646-651.]
[15]Bao Jianping, Liu Yurui, Zhu Cuishan,et al.The geochemical properties of natural gas and crude oil from Xuwen X1 well,Maicheng sag, Beibuwan basin[J].Natural Gas Geoscience, 2006, 17(3):300-304.[包建平,刘玉瑞,朱翠山,等.北部湾盆地迈陈凹陷徐闻X1井油气地球化学特征[J].天然气地球科学,2006,17(3):300-304.]
[16]Venkatesan M I.Tetrahymanol:Its widespread occurrence and geochemical significance[J]. Geochimica et Cosmochimica Acta,1989,53:3095-3101.
[1] 李梦茹,唐友军,刘岩,胡辉,贺其川. 江陵凹陷不同地区原油地球化学特征及油源对比[J]. 天然气地球科学, 2018, 29(9): 1240-1251.
[2] 王强, 张大勇, 王杰, 陶成, 腾格尔, 刘文汇. 烃类与非烃综合判识干酪根与原油裂解气[J]. 天然气地球科学, 2018, 29(9): 1231-1239.
[3] 沈安江,付小东,张友,郑兴平,刘伟,邵冠铭,曹彦清. 塔里木盆地塔东地区震旦系—下古生界碳酸盐岩油气生储条件与勘探领域[J]. 天然气地球科学, 2018, 29(1): 1-16.
[4] 陈燕燕,胡素云,李建忠,王铜山, 陶小晚. 原油裂解过程中组分演化模型及金刚烷类化合物的地球化学特征[J]. 天然气地球科学, 2018, 29(1): 114-121.
[5] 陈双,黄海平,张博原,谢增业. 原油及源内残余沥青裂解成气差异及地质意义[J]. 天然气地球科学, 2017, 28(9): 1375-1384.
[6] 王钊,周新平,李树同,李士祥,邱军利,张文选,王琪. 鄂尔多斯盆地吴起地区长9段和长10段原油地球化学特征对比[J]. 天然气地球科学, 2017, 28(9): 1385-1395.
[7] 纪红,黄光辉,成定树,许姗姗. 塔里木盆地库车坳陷大宛齐—大北地区原油轻烃特征及地球化学意义[J]. 天然气地球科学, 2017, 28(6): 965-974.
[8] 包建平,何丹,朱翠山,刘玉瑞,王文军,刘宏宇. 北部湾盆地迈陈凹陷徐闻X3井原油地球化学特征及其成因[J]. 天然气地球科学, 2017, 28(5): 665-676.
[9] 刘岩,杨池银,肖敦清,廖前进,周立宏,于学敏,国建英,蒲秀刚,姜文亚,邹磊落,聂国振,刘庆新,滑双君. 裂陷湖盆深层烃类赋存相态极限的动力学过程分析——以渤海湾盆地歧口凹陷为例[J]. 天然气地球科学, 2017, 28(5): 703-712.
[10] 陈杰,张剑,方杰. 阿联酋二叠系Khuff组气藏成藏模式与成藏过程分析[J]. 天然气地球科学, 2017, 28(4): 521-528.
[11] 马安来,金之钧,朱翠山. 塔里木盆地塔河油田奥陶系原油成熟度及裂解程度研究[J]. 天然气地球科学, 2017, 28(2): 313-323.
[12] 杨禄,张春明,李美俊,卞龙,余兴. Mango轻烃参数在塔里木盆地大宛齐油田中的应用[J]. 天然气地球科学, 2016, 27(8): 1524-1531.
[13] 付德亮,周世新,李靖,李源遽,马瑜. 原油裂解动力学及其相变特征和意义——以柴达木盆地北缘伊深1井为例[J]. 天然气地球科学, 2016, 27(8): 1500-1508.
[14] 谢增业,李志生,魏国齐,李剑,王东良,王志宏,董才源. 腐泥型干酪根热降解成气潜力及裂解气判识的实验研究[J]. 天然气地球科学, 2016, 27(6): 1057-1066.
[15] 马安来. 金刚烷类化合物在有机地球化学中的应用进展[J]. 天然气地球科学, 2016, 27(5): 851-860.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!